Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Did death-dealing cyanobacteria cause the mass deaths of Messel?

17.11.2004


In 1875 the remains of a prehistoric crocodile were found in the brown coal mine at Messel near Darmstadt; since then a large number of well preserved fossils have also been discovered. Palaeontologists have long puzzled over what could have been the reason for this annihilation of so many creatures. In the latest issue of the Paläontologische Zeitschrift (‘Journal of Palaeontology’) researchers from the University of Bonn have put forward a new theory: the cause of the deaths of these animals may have been poisoning by cyanobacteria.



The fossil site of Messel, near Darmstadt (central Germany) is a world heritage site; it is famous throughout the world for the fossils of animals and plants from a tropical landscape 47 million years ago, all of them excellently preserved. Nowhere else have so many bats and birds been found in lake deposits. Among the mammals even the contents of the stomach are usually preserved. But how did these animals die? The well-filled stomachs are not exactly an indicator of disease or fatal debility. Until recently the cause of death was assumed to be, inter alia, gases of volcanic origin which may have collected over the lake. This might explain why the animals suffocated. But such clouds of gas – if they indeed existed – must have dispersed rapidly, given the size of the lake. It is still a moot point whether, after hundreds of thousands of years, gas was still escaping from the volcanic subsoil which formed the extinct volcanic crater lake of Messel.

The University of Bonn palaeontologists on Professor Wighart von Koenigswald’s team have proposed a new theory in the latest issue of the Paläontologische Zeitschrift which sheds light on the possible cause of death. While examining the fossils the researchers became aware that the deaths must have occurred at the same time of year in different years. The five pregnant mares which were found at completely different levels in the oil shale at Messel all died at the same time of year, as the foetuses were at the same stage of development. Among the tortoises there were also five pairs which died during copulation, i.e. during the breeding season.


One more piece of the puzzle was provided when the Bonn lecturer Dr. Andreas Braun noticed that there are lime deposits in the sedimentary structures of Messel. A very similar structure occurs in lake deposits which Professor von Koenigswald’s doctoral student Thekla Pfeiffer discovered in Neumark-Nord. In deposits which were about 200,000 years old she was able to detect traces of the highly toxic microcystine, a poison which is produced by cyanobacteria. The researchers assume that the sedimentary structures in Messel are also due to these microbes, also known as ‘blue-green algae’. The animals may therefore have died from microcystine poisoning due to the seasonal algal bloom caused by deadly cyanobacteria.

From Canada we know that during algal bloom cyanobacteria cause toxic foam to collect in the surface water. Anything that drinks this water collapses almost immediately. This is true of both land animals and birds. Observations have shown that even the tiny quantities of water drunk by bats when flying low over the water can be fatal. Many aspects of the fossil finds of Messel which were not previously understood can be explained by this theory of a seasonal growth of highly toxic cyanobacteria which was repeated year after year. The theory still awaits further confirmation. One difficulty, however, is already apparent: it will be very difficult to provide direct evidence of toxic agents after 47 million years.

Prof. Wighart von Koenigswald | alfa
Further information:
http://www.uni-bonn.de

More articles from Earth Sciences:

nachricht Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments
22.01.2018 | Duke University

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>