Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Geological demolition derby


The spectacular rift valleys of the Tibetan plateau don’t all run north-south as previously thought, according to new research.

A satellite’s-eye-view of India and Tibet. Image from NASA’s Terra satellite. Photo credit: NASA

The rift valleys actually curve away -- some to the east, some to the west -- from the point where India is punching into the gut of Tibet. "Everyone looked at the rifts and said they went north-south," said Paul Kapp, assistant professor of geosciences at the University of Arizona in Tucson. "I looked and said -- they’re not." His work contradicts a leading theory that suggests the rifts are a consequence of Tibet flowing slowly out over India’s northern edge.

The new research indicates the Tibetan plateau is being compressed between the Indian subcontinent to the south and the solid wall of the North China block. As a result, Tibet is splitting much like an orange squeezed by a vise. Kapp’s research challenges the idea that the 16,000-foot-high Tibetan plateau, the highest-elevation region on Earth, is losing elevation. Previous research reported the Tibetan plateau reached its highest elevation eight million years ago and is now slowly deflating as it spreads out over India. "My hypothesis predicts that the plateau is getting higher. The other theory suggests the plateau is collapsing," he said. "We’re in a place where continents are slamming against each other. Instead of Tibet crumpling like an accordion, we see these rift valleys. The rifts are from the east-west stretching of the plateau."

The article, "India Punch Rifts Tibet," by Kapp and Jerome H. Guynn, a doctoral candidate in UA’s department of geosciences, is in the November issue of the journal Geology. Although the standard description says Tibet’s rift valleys run north-south, that didn’t square with what Kapp saw when he looked at topographic maps of the area. The problem nagged at him for years.

In fall of 2003, he was teaching structural geology. As he worked on the lecture about stress in the crust from continents colliding, he realized that collisional stress caused the pattern of Tibet’s rift valleys. He remembers thinking, "Yeah, that’s it!" "It took me eight years to recognize the pattern," he said. "It took me two days to come up with an explanation."

Geologists often use digital elevation models, or DEMs, that are developed from satellite imagery. Such maps, which look like a shaded relief map, show the Earth’s current surface in incredible detail. Kapp said that the detailed nature of such maps obscures the underlying pattern of the rifts.

So Kapp and Guynn used a computer to strip away the DEM’s superficial layers to expose the underlying structure of the plateau. Once they created a bare-bones map of the region, the curving patterns of the rifts were clear. "I took away all the secondary faults and then the pattern jumped out," Kapp said. Because India is crashing into Tibet, geologists call India "the indentor." Kapp says that because India is hitting Tibet head-on, the Tibetan plateau is developing splits, or rifts, that curve away from the axis of impact.

Once Kapp figured out what caused the rifts, he and Guynn created mathematical models to test the idea. According to the models, a head-on punch split the plateau just the way Kapp predicted. In addition to punching Tibet directly, a lower portion of the Indian subcontinent is sliding under Tibet and lifting the plateau, Kapp said. Measuring how much Tibet is moving up or down is extremely difficult, although the technology is getting better all the time. "I think there will be some serious arguing for probably the next five years."

The Himalayas and Tibet are an area of active research by many groups of geologists. Kapp said, "If you want to understand mountain-building, you go there." Kapp and Guynn are among them. This summer they’ll be there scanning the region’s rocks for more evidence to support their new theory.

Mari N. Jensen | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>