Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Old riverbed keeps chemicals from entering Ohio River

11.11.2004


A long-dry riverbed in northeastern Ohio is preventing a pool of chemical waste from infiltrating the Ohio River, geologists have found.



The finding may call into question the need to clean up similar chemical waste sites. It also indicates a previously unknown interaction between an underground aquifer and the nearby Ohio River. Beneath sand and gravel on the grounds of Barium and Chemical Inc. in Steubenville, OH, lies an aquifer that contains chemicals such as nitrate and barium that the company dumped there when such dumping was still legal, before the 1980s. The company is now working with the United States Environmental Protection Agency to clean up the site, so that the chemicals won’t enter the Ohio River -- which provides water to many local towns.

In 1992, the company asked Kevin Svitana, then an independent hydrology consultant, to study the site and determine how the cleanup should proceed. The site proved unusual, in that chemicals in the underground pool didn’t flow into the river as he had expected. Ever since, Svitana has tried to figure out why. He continued monitoring the pool’s strange behavior after becoming a doctoral student in geological sciences at Ohio State University in 2002.


Wednesday, at the Geological Society of America meeting in Denver, Svitana reported that he may have uncovered part of the answer: Ohio River water flowing into old troughs, or paleo-channels, beneath the former position of the river is forcing the pool to remain trapped within those channels and away from the present-day river. "The question now is, will the chemical pool stay in place, so that the company may use a natural attenuation approach to the cleanup?" he said.

The river deposited sand and gravel above the aquifer more than 10,000 years ago, before the river’s path shifted almost a mile to the east, explained Svitana. He found that the dry riverbed is still linked to the present-day Ohio River by old channels filled with sand and gravel that lie beneath the surface. Water flows between the buried aquifer and the present-day river in a kind of seesaw motion -- with the chemical pool caught in-between.

What is strange is that normally a water source so close to a major river would flow directly into the river, and never in the opposite direction, Svitana said. But in this case, water flows in both directions. The good thing is that the chemicals never seem to reach the river, because of the opposite flow from the river toward the aquifer. The reason probably has something to do with the subsurface geology of the channels from the old riverbed.

Svitana knew something was odd during his first study of the site, when he inserted monitors in the ground to track the water flow. In one measurement, the water in the aquifer would be flowing in the wrong direction, away from the river. In the next measurement -- only days later -- it would be flowing toward the river again. He began gathering data from the aquifer twice a week in 1999, and also monitored it continuously for one week in 2004, when the measurements showed that the water changed direction on a scale of hours instead of days.

Larry Krissek, associate professor of geological sciences at Ohio State and Svitana’s advisor, said he was surprised to find that the "seesaw" shifted so quickly in response to a rainfall or a rise in water level in the river. "From my limited experience with groundwater, I knew that groundwater systems respond to surface conditions at timescales of weeks to months, but I didn’t realize that the response time could be shortened to hours," Krissek said. "In this case, an important reason for that rapid response is the nature of the subsurface geology, particularly the presence of an old river channel filled with very permeable sands and gravels," he continued. "As a result, this study clearly demonstrates the importance of the subsurface geology in affecting the speed and direction of groundwater flow."

Using a computer model, Svitana matched the shifts in the seesaw effect with rainfall and river rise in the area. He even determined that the raising and lowering of water levels in the shipping locks under a nearby bridge created waves that jostled the aquifer. But over the course of this study, a flow from the river has always been balanced with a counterflow from the aquifer that keeps the chemicals in place. Svitana wants to do more computer modeling to understand exactly what makes site capable of trapping the chemicals in this way. If the seesaw effect is not unique to the immediate area, it may help geologists understand other dumping sites along the river.

Krissek would like to see Svitana’s studies repeated in similar settings to answer further questions. "For example, is there a critical buried channel size or depth, or a critical distance away from the major surface water source at which this rapid linkage to the groundwater system breaks down?" Krissek asked. Krissek has no connection to Barium and Chemicals, Inc. The company paid for the water monitoring equipment, and Svitana still does consulting work for the company during his breaks from the university.

Kevin Svitana | EurekAlert!
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

nachricht Environmental history told by sludge: Global warming lets the dead zones in the Black Sea grow
10.01.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>