Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient marine invasion sheds light on diversity

09.11.2004


Fossils from the sea floor illuminate the relationship between local and global diversity, and these relationships may help us understand the effects of global climate change on species diversity.



"Looking at fossils can tell you something about the controls on global diversity, but so much of the investigation of the fossil record has looked only at global compilations of fossil species," says Dr. Mark E. Patzkowsky, associate professor of geosciences. "Recently, a few studies have shown that if you look at diversity locally, it is not necessarily mimicking global diversity at that time."

Researchers look at three types of diversity: local or alpha diversity, which is diversity at a specific location; regional or gamma diversity, which is diversity in a large area up to continent size; and beta diversity which is the diversity gained as one moves from one area to another.


Patzkowsky and Steven M. Holland, professor of geology, University of Georgia, looked at fossils similar to modern corals, clams, snails and brachiopods from 450 million-year-old fossil beds in the area around Cincinnati, Ohio. These Ordovician fossils show great diversity of sea floor invertebrates.

They made 700 individual collections and counted about 41,000 individual animal fossils. A typical collection area was a half meter piece of exposed ancient sea floor. Fossils were collected from areas that were originally deep sea floor, deep subtidal sea floor, shallow subtidal sea floor and protected lagoon sea floor. The fossils represent six time slices, each of about a million years, however, for this study, they only looked at fossils from the four time slices that contained fossils from deep and shallow subtidal areas. "We already knew that there was an invasion of species during one of the time slices," says Patzkowsky. "We wanted to see how that invasion affected diversity."

The researchers found that alpha, or local, diversity changed only slightly, but on a regional or gamma diversity basis, diversity increase was much more by about 26 percent. "We realized that the large change in gamma diversity was not coming from the meager change in alpha diversity," said Patzkowsky. "If not alpha diversity than it had to come from the beta diversity, but how?"

Patzkowsky and Holland suggest two ways beta diversity could increase gamma diversity. One way to increase beta diversity is for the habitat distribution of populations to become much narrower so that populations are using smaller amounts of resources. The other way is that the habitat becomes much more diverse providing different habitat niches.

The researchers want to test if the habitat distribution narrowed or if there was greater heterogeneity of habitat. They also want to figure out which species invaded, where they came from and if they replace species or simply add to the mix. "We are fairly certain that the invasion occurred because of a climate change," says Patzkowsky. "We would like to know if the invasion caused extinctions."

Carbonate rocks created in cool waters exist before the invasion, but during the invasion, the rocks were formed in warmer waters. During the Ordovician, the central United States was situated on the equator. The rock deposits indicate that the temperatures were increasing on a regional scale, just prior to a significant interval of global cooling. "We want to see how changes in the environment and temperature can affect the distribution of species," says Patzkowsky. "We are only one of a series of studies trying to understand the factors that control global diversity."

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>