Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TRMM satellite proves El Nino holds the reins on global rains

09.11.2004


NASA scientists recently found the El Nino Southern Oscillation (ENSO) is the main driver of the change in rain patterns all around the world.



The NASA and Japan Aerospace Exploration Agency (JAXA) Tropical Rainfall Measuring Mission (TRMM) satellite has enabled scientists to look around the globe and determine where the year-to-year changes in rainfall are greatest. The TRMM is a joint mission between NASA and JAXA designed to monitor and study tropical rainfall.

Researchers Ziad Haddad and Jonathan Meagher of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., Robert Adler and Eric Smith of NASA’s Goddard Space Flight Center, Greenbelt, Md., used TRMM data to identify areas where the year-to-year change in rainfall between 1998 and 2003 was greatest.


By studying the rain patterns in these areas over the past 50 years, with rain gauge data prior to 1998, they established the main component of this change in global rainfall is directly correlated with the El Nino Southern Oscillation. The study appeared in a recent issue of the Journal of Geophysical Research-Atmospheres.

Haddad and his colleagues compared local changes in worldwide rainfall. For years, scientists have known El Nino drastically modifies rainfall patterns in many regions. For example, Indonesia and the Northeastern Amazon basin consistently suffer droughts during El Nino and excessive rains during La Nina. The Southeastern United States and California are typically wetter than usual during El Nino and drier than usual during La Nina.

Scientists also have known several regions with abundant rain are not influenced by the El-Nino/La-Nina changes, including the Bay of Bengal and the vast expanse of the Western Pacific Ocean between the Marshall Islands, Micronesia and the Marianas.

Until the launch of TRMM in 1997, it was impossible to accurately measure change in tropical rainfall patterns, because no instruments were available to record global rainfall. TRMM uses microwave technology to probe through clouds and estimate how much rainfall they are producing. The TRMM data are invaluable over areas where there are no rain gauges, such as the open ocean.

Using TRMM’s measurements, the researchers were able to condense the year-to-year change in rainfall patterns into a single rain-change index. The index is a color-coded map that shows areas of rainfall around the world that are influenced somewhat to greatly, during an ENSO event.

Rainfall data from land and island stations were used to extend this index back in time and to compare it with the ENSO sea-surface temperature and atmospheric pressure. The results showed a strong relationship between the rainfall patterns and ENSO. "The fact that the rain-change index, which comes directly from global measurements, tracks the ENSO indices from the 1950s to the present confirms that El Nino is the principal driver of global year-to-year rainfall change," Haddad said.

NASA plans the Global Precipitation Measurement mission (GPM), a future multi-national multi-satellite mission to expand the scope of TRMM. GPM will focus on producing three- dimensional maps of rain around the world every three hours.

TRMM is the first space-based rain gauge that uses microwaves to see how much precipitation falls from clouds around the tropics. The TRMM satellite’s precipitation radar acts like a highly sensitive microwave camera. It is capable of probing clouds to reveal their vertical structure and precipitation they produce. It has enabled scientists to measure rainfall over the oceans and landmasses with unprecedented accuracy.

Rob Gutro | EurekAlert!
Further information:
http://www.gsfc.nasa.gov

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>