Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Underwater Robot Makes History Crossing the Gulf Stream


Like the sailing vessel used by Captain Joshua Slocum to sail solo around the world 100 years ago, another ocean-going vehicle is making history. A small ocean glider named Spray is the first autonomous underwater vehicle, or AUV, to cross the Gulf Stream underwater, proving the viability of self-propelled gliders for long-distance scientific missions and opening new possibilities for studies of the oceans.

Jeff Sherman of Scripps, Breck Owens and Brian Guest of WHOI, assemble the glider in the WHOI float lab. (Photo by Tom Kleindinst, Woods Hole Oceanographic Institution)

An illustration of the Spray glider in action. (Illustration by Jayne Doucette, Woods Hole Oceanographic Institution)

Launched September 11, 2004, about 100 miles south of Nantucket Island, Mass., the two-meter- (6-foot)-long orange glider with a four-foot wingspan looks like a model airplane with no visible moving parts. It has been slowly making its way toward Bermuda some 600 miles to the south of Cape Cod at about one-half knot, roughly half a mile an hour or 12 miles per day, measuring various properties of the ocean as it glides up to the surface and then glides back down to 1,000-meters depth (3,300 feet) three times a day. Scientists recovered the vehicle this week north of Bermuda.

Every seven hours Spray spends about 15 minutes on the surface to relay its position and information about ocean conditions, such as temperature, salinity and pressure, via satellite back to Woods Hole, Mass., and San Diego, where scientists Breck Owens from Woods Hole Oceanographic Institution, and Russ Davis and Jeff Sherman of Scripps Institution of Oceanography at the University of California, San Diego, track its progress.

It has been an adventure-filled voyage. After two false starts this summer, when malfunctioning equipment cut earlier missions short and the scientists had to recover the vehicle after a few days at sea, the 112-pound glider was launched (with fingers crossed) in September from the research vessel Cape Hatteras.

Like parents giving the car keys to a teenage driver for the first time, Owens, Davis and Sherman were apprehensive yet confident that the vehicle would reach Bermuda. The first week went smoothly, but when the vehicle began to cross the Gulf Stream, where surface currents can exceed six mph across the Stream’s 30-60-mile width, Spray was taken for a fast ride back to the north. "We lost almost two weeks’ progress in just two days," noted Sherman. The ability to communicate with the vehicle and send commands enabled the scientists to give it a new course each time it surfaced, and Spray eventually crossed the Gulf Stream and was back on track. "It has been exciting, to say the least," Owens said. "We have just completed a track across the Gulf Stream (Learn more about Spray at WHOI’s Ocean Instrument site and Scripps’ Spray site) and proved we can use gliders to monitor circulation patterns and major currents."

Spray has a range of 6,000 kilometers, or about 3,500 miles, which means it could potentially cross the Atlantic Ocean and other ocean basins. "The key," said Davis, "is that Spray can stay at sea for months at relatively low cost, allowing us to observe large-scale changes under the ocean surface that might otherwise go unobserved."

Being able to communicate with the vehicle and change course or change the information it is collecting while at sea is a big step forward in the ability to gather information in the ocean. "We envision having fleets of gliders in operation in a few years," Owens said. "It could change the very nature of the kinds of questions we can ask about how the ocean works."

Spray glides up and down through the water on a pre-programmed course by pumping one liter (about four cups) of mineral oil between two bladders, one inside the aluminum hull and the other outside. By changing the volume of the glider, making it denser or lighter than the surrounding water, the vehicle floats up and sinks down while wings provide lift to drive the vehicle forward. Batteries power buoyancy change, onboard computers and other electronics.

The glider records its position at the beginning and the end of each dive by rolling on its side to expose a Global Positioning System (GPS) antenna embedded in the right wingtip. Researchers obtain data from the glider and send new instructions to it using a satellite phone system and an antenna embedded in the left wingtip.

Sensors on the glider can be changed for each mission. For the mission from Cape Cod to Bermuda, the Spray glider is equipped with a CTD (for conductivity, temperature and depth) instrument that measures temperature, salinity and pressure, and an optical sensor that measures turbidity in the water, which is related to biological productivity.

For the next mission in early 2005, the glider will make a round trip between Woods Hole, Mass., and Bermuda. For future missions it will also be equipped with an Acoustic Doppler Current Profiler (ADCP) to give vertical profiles of current speed and velocity. In the not-too-distant future, Owens and Davis expect that the gliders will be equipped with an entire suite of sensors that indicate the presence of dissolved oxygen, carbon dioxide, alkalinity and nutrients in the water.

The idea for developing a robotic glider like Spray that could travel in the ocean gathering data over long periods came 15 years ago from the late Henry Stommel, a scientist at Woods Hole Oceanographic Institution known for his contributions to understanding the dynamics of ocean currents, especially the Gulf Stream. Stommel honored the first man to sail around the world alone, Joshua Slocum, by naming his idea the Slocum Mission. Slocum departed Boston on April 24,1895, on his three-year circumnavigation in Spray, a sloop he rebuilt himself. The new underwater glider is called Spray to show its lineage from Stommel’s idea and Slocum’s brave voyage.

Sherman, Davis and Owens developed the Spray glider with support from the Office of Naval Research. Additional sensor development was funded by the National Oceanic and Atmospheric Administration’s Climate Observations Program. The Gulf Stream project is funded by the National Science Foundation. "Spray gliders can look at entire sections of ocean basins, like the North Atlantic, or serve as virtual moorings by keeping station at a single point," Owens said. "Unlike humans, who need to stop for breaks, gliders can carry out missions from several weeks to as long as six months. They are fairly inexpensive to build and easy to operate. We are looking forward to the day we can routinely send gliders out on missions from the comfort of our laboratories or even our homes ashore."

While gratified to have their instrument complete its voyage, the developers of Spray are mindful that they are just at the start of a new era of autonomous ocean sampling made possible by microelectronics and satellite navigation and communication. "Oceanographic gliders are now at the stage similar to the start of aviation," Sherman said. "Today’s accomplishments seem remarkable, but in years to come they will be commonplace, and one will wonder what the big deal was all about."

WHOI is a private, independent marine research and engineering, and higher education organization located on Cape Cod in Falmouth, MA. Its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the ocean’s role in the changing global environment. Established in 1930 on a recommendation from the National Academy of Sciences, the Institution is organized into five scientific departments, interdisciplinary research institutes and a marine policy center, and conducts a joint graduate education program with the Massachusetts Institute of Technology.

Scripps Institution of Oceanography, at the University of California, San Diego, is one of the oldest, largest, and most important centers for global science research and graduate training in the world. The National Research Council has ranked Scripps first in faculty quality among oceanography programs nationwide. The scientific scope of the institution has grown since its founding in 1903 to include biological, physical, chemical, geological, geophysical, and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today in 65 countries. The institution has a staff of about 1,300, and annual expenditures of approximately $140 million from federal, state, and private sources. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration.

Shelley Dawicki | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Gas hydrate research: Advanced knowledge and new technologies
23.03.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht New technologies and computing power to help strengthen population data
22.03.2018 | University of Southampton

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>