Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumbleweeds good for uranium clean-up

05.11.2004


The lowly, ill-regarded tumbleweed might be good for something after all.



A preliminary study reveals that tumbleweeds, a.k.a. Russian thistle, and some other weeds common to dry Western lands have a knack for soaking up depleted uranium from contaminated soils at weapons testing grounds and battlefields. "There is some use to what we consider noxious weeds," said geologist Dana Ulmer-Scholle of the New Mexico Institute of Mining and Technology in Socorro.

Depleted uranium (DU) is used in armor-piercing munitions. Although it produces only a low level of radiation, the metal poses a hazard in soils because it – like some other heavy metals – is toxic if ingested. Other plants have been known to draw out DU from soils in wetter climes "but no one wanted to try doing it in arid regions," said Ulmer-Scholle.


Ulmer-Scholle’s work is underwritten by the US Department of Defense, which is looking for innovative, cost-effective, and efficient ways of cleaning up soils at weapons testing areas and battlefields where DU has been used. Ulmer-Scholle will be presenting the promising results of tumbleweeds and other weeds in arid lands on 10 November at the annual meeting of the Geological Society of America in Denver.

In her study, Ulmer-Scholle and her colleagues Bonnie Frey, Terry Thomas, and Michael Blaylock first sought out DU contaminated soils at an inactive munitions testing ground in New Mexico. Then they planted selected native and non-native plants in a test garden and in pots to see how much DU the plants absorbed from the soil.

Among the plants that sucked up lots of DU was Indian mustard (Brassica juncea), she reports. But that plant it is not well suited to deserts and needed irrigation. Better adapted to the dry environs, she said, were Russian thistle (Salsola tragus), the grain crop quinoa (Chenopodium quinoa) and purple amaranth (Amaranthus blitum). "Our goal is to use plants with the least amount of water and the minimum amount of care," said Ulmer-Scholle. They also found that sprinkling the ground with citric acid enhanced the plants’ ability to absorb DU.

Russian thistle is a non-native plant to North America and is considered a nuisance in most parts of the western US. It springs up almost anywhere soils have been disturbed and each plant scatters its hundreds of seeds by detaching from its roots and tumbling along the ground in the wind.

Using tumbleweeds and other unpopular plants for DU clean-up needn’t spread noxious weeds either, Ulmer-Scholle explained. It turns out that the plants tested do their best DU absorbing before they flower and long before they set seeds. So part of the trick to using weeds to clean up DU is to harvest the plants before they flower, she said.

The fact that plants absorb uranium is not news, since old uranium prospectors used to use Geiger counters on junipers to find buried uranium lodes. But finding a plant that grows fast on little water and can be easily harvested to carry away the depleted uranium – that’s another story. "We tried it here (in Southern New Mexico) and also in a natural uranium mine site in northern New Mexico," she said. The weeds picked up even more uranium in more contaminated soils. "So we got more where there was more in the soils."

As for why some plants absorb uranium, that’s still a mystery, says Ulmer-Scholle. It could be that the plants use the metal to create pigments. One way she hopes to test that possibility is to grow native plants used for dyes, she said.

Phytoremediation of Depleted Uranium in an Arid Environment
Environmental Geosciences, Poster Session II
Wednesday, 10 November, 1:30 -5:30 p.m., CCC
Exhibit Hall

Ann Cairns | EurekAlert!
Further information:
http://www.geosociety.org

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>