Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

People cause more soil erosion than all natural processes

04.11.2004


Human activity causes 10 times more erosion of continental surfaces than all natural processes combined, an analysis by a University of Michigan geologist shows.



People have been the main cause of worldwide erosion since early in the first millennium, said Bruce Wilkinson, a U-M professor of geological sciences. Wilkinson will present his findings Nov. 8 at a meeting of the Geological Society of America in Denver, Colo.

Many researchers have tried to assess the impact of human activity on soil loss, but most have only guessed at how erosion due to natural forces such as glaciers and rivers compares with that caused by human activity---mainly agriculture and construction, Wilkinson said. He used existing data on sedimentary rock distributions and abundances to calculate rates of natural erosion. "If you ask how fast erosion takes place over geologic time---say over the last 500 million years---on average, you get about 60 feet every million years," Wilkinson said. In those parts of the United States where soil is being eroded by human agricultural activity, however, the rate averages around 1,500 feet per million years, and rates are even higher in other parts of the world. Natural processes operate over areas larger than those affected by agriculture and construction, but even taking that into account, "the bottom line is, we move about 10 times as much sediment as all natural processes put together," he said.


Because soil formation proceeds at about the same rate as natural erosion, Wilkinson’s results mean that humans are stripping soil from the surface of the Earth far faster than nature can replace it. "This situation is particularly critical," Wilkinson said, "because the Earth’s human population is growing rapidly and because almost all potentially arable land is now under the plow."

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.geosociety.org
http://www.umich.edu

More articles from Earth Sciences:

nachricht A new dead zone in the Indian Ocean could impact future marine nutrient balance
06.12.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>