Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers tracking sources of arsenic contamination in water

02.11.2004


Virginia Tech researchers from geosciences and biology are looking at where arsenic occurs in water, how it is getting there, and how to prevent it. They will present their findings at the 116th national meeting of the Geological Society of America in Denver Nov. 7-10.



Since health data have demonstrated that arsenic is a carcinogen, the U.S. standard for arsenic in drinking water has been lowered from 50 to 10 parts per billion, which is the same as the European Union standard, said Madeline Schreiber, assistant professor of geosciences. She and associate professor of biology Maurice Valett are lead investigators on a National Science Foundation-funded project that began in 2002 on "Transport, transformation, and retention of arsenic in a headwater stream: hyrdrologic, biological, and geochemical controls."

Research is being conducted at a site near the Virginia Tech campus, where arsenopyrite, an arsenic-bearing sulfide, was mined from 1903 to 1919. "Arsenic was used in pesticide. The extraction process involved heating the ore so that the arsenic would oxidize as a white powder," Schreiber said.


The researchers have discovered that a stream adjacent to the site is receiving arsenic from groundwater that has flowed through the mine, but that some of the arsenic is being retained in the streambed. Discovering the pathways from the mine to the stream and the conditions of discharge from groundwater into the stream are first steps to possible remediation and control, Schreiber said.

"The change that occurs as anaerobic (oxygen-free) groundwater discharges to aerobic surface water impacts the transport of arsenic. Arsenic is more mobile under anaerobic conditions, while under aerobic conditions, it is bound to iron minerals," she said "So we are asking, "What happens to arsenic as it is transported from groundwater to surface water? Is it retained at the interface between the two zones?

The goal is to figure out how to prevent arsenic from getting into drinking water sources, she said. "We are trying to determine the biogeochemical controls on arsenic release. In this case, release was accelerated through human activity (mining). But we are also looking at how the mineral weathers; then, once it is in the water, how it interacts with the sediment and with bacteria."

Since much of the arsenic contamination is natural, rather than as a result of industry, "and a little bit goes a long way, the taxpayers will have to pay for prevention. But prevention is less expensive than remediation," she said.

The paper, "Evaluating arsenic transport within anthropogenic aquifers in mined watersheds," co-authored by Schreiber, biology associate professor Maurice Valett, biology student Brendan V. Brown of Savannah, Ga., and Craig Altare of the earth and environmental sciences department at New Mexico Tech, will be presented at 4:55 p.m. Tuesday, Nov. 9, in room 205 of the Colorado Convention Center.

Three students are working on the research project now. Two students have graduated, so two undergraduates are being added, thanks to a supplement NSF grant to support undergraduate researchers (REU).

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>