Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers tracking sources of arsenic contamination in water

02.11.2004


Virginia Tech researchers from geosciences and biology are looking at where arsenic occurs in water, how it is getting there, and how to prevent it. They will present their findings at the 116th national meeting of the Geological Society of America in Denver Nov. 7-10.



Since health data have demonstrated that arsenic is a carcinogen, the U.S. standard for arsenic in drinking water has been lowered from 50 to 10 parts per billion, which is the same as the European Union standard, said Madeline Schreiber, assistant professor of geosciences. She and associate professor of biology Maurice Valett are lead investigators on a National Science Foundation-funded project that began in 2002 on "Transport, transformation, and retention of arsenic in a headwater stream: hyrdrologic, biological, and geochemical controls."

Research is being conducted at a site near the Virginia Tech campus, where arsenopyrite, an arsenic-bearing sulfide, was mined from 1903 to 1919. "Arsenic was used in pesticide. The extraction process involved heating the ore so that the arsenic would oxidize as a white powder," Schreiber said.


The researchers have discovered that a stream adjacent to the site is receiving arsenic from groundwater that has flowed through the mine, but that some of the arsenic is being retained in the streambed. Discovering the pathways from the mine to the stream and the conditions of discharge from groundwater into the stream are first steps to possible remediation and control, Schreiber said.

"The change that occurs as anaerobic (oxygen-free) groundwater discharges to aerobic surface water impacts the transport of arsenic. Arsenic is more mobile under anaerobic conditions, while under aerobic conditions, it is bound to iron minerals," she said "So we are asking, "What happens to arsenic as it is transported from groundwater to surface water? Is it retained at the interface between the two zones?

The goal is to figure out how to prevent arsenic from getting into drinking water sources, she said. "We are trying to determine the biogeochemical controls on arsenic release. In this case, release was accelerated through human activity (mining). But we are also looking at how the mineral weathers; then, once it is in the water, how it interacts with the sediment and with bacteria."

Since much of the arsenic contamination is natural, rather than as a result of industry, "and a little bit goes a long way, the taxpayers will have to pay for prevention. But prevention is less expensive than remediation," she said.

The paper, "Evaluating arsenic transport within anthropogenic aquifers in mined watersheds," co-authored by Schreiber, biology associate professor Maurice Valett, biology student Brendan V. Brown of Savannah, Ga., and Craig Altare of the earth and environmental sciences department at New Mexico Tech, will be presented at 4:55 p.m. Tuesday, Nov. 9, in room 205 of the Colorado Convention Center.

Three students are working on the research project now. Two students have graduated, so two undergraduates are being added, thanks to a supplement NSF grant to support undergraduate researchers (REU).

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Earth Sciences:

nachricht Seabed mining could destroy ecosystems
23.01.2018 | University of Exeter

nachricht How climate change weakens coral 'immune systems'
23.01.2018 | Ohio State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>