Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers tracking sources of arsenic contamination in water

02.11.2004


Virginia Tech researchers from geosciences and biology are looking at where arsenic occurs in water, how it is getting there, and how to prevent it. They will present their findings at the 116th national meeting of the Geological Society of America in Denver Nov. 7-10.



Since health data have demonstrated that arsenic is a carcinogen, the U.S. standard for arsenic in drinking water has been lowered from 50 to 10 parts per billion, which is the same as the European Union standard, said Madeline Schreiber, assistant professor of geosciences. She and associate professor of biology Maurice Valett are lead investigators on a National Science Foundation-funded project that began in 2002 on "Transport, transformation, and retention of arsenic in a headwater stream: hyrdrologic, biological, and geochemical controls."

Research is being conducted at a site near the Virginia Tech campus, where arsenopyrite, an arsenic-bearing sulfide, was mined from 1903 to 1919. "Arsenic was used in pesticide. The extraction process involved heating the ore so that the arsenic would oxidize as a white powder," Schreiber said.


The researchers have discovered that a stream adjacent to the site is receiving arsenic from groundwater that has flowed through the mine, but that some of the arsenic is being retained in the streambed. Discovering the pathways from the mine to the stream and the conditions of discharge from groundwater into the stream are first steps to possible remediation and control, Schreiber said.

"The change that occurs as anaerobic (oxygen-free) groundwater discharges to aerobic surface water impacts the transport of arsenic. Arsenic is more mobile under anaerobic conditions, while under aerobic conditions, it is bound to iron minerals," she said "So we are asking, "What happens to arsenic as it is transported from groundwater to surface water? Is it retained at the interface between the two zones?

The goal is to figure out how to prevent arsenic from getting into drinking water sources, she said. "We are trying to determine the biogeochemical controls on arsenic release. In this case, release was accelerated through human activity (mining). But we are also looking at how the mineral weathers; then, once it is in the water, how it interacts with the sediment and with bacteria."

Since much of the arsenic contamination is natural, rather than as a result of industry, "and a little bit goes a long way, the taxpayers will have to pay for prevention. But prevention is less expensive than remediation," she said.

The paper, "Evaluating arsenic transport within anthropogenic aquifers in mined watersheds," co-authored by Schreiber, biology associate professor Maurice Valett, biology student Brendan V. Brown of Savannah, Ga., and Craig Altare of the earth and environmental sciences department at New Mexico Tech, will be presented at 4:55 p.m. Tuesday, Nov. 9, in room 205 of the Colorado Convention Center.

Three students are working on the research project now. Two students have graduated, so two undergraduates are being added, thanks to a supplement NSF grant to support undergraduate researchers (REU).

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>