Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hurricane Ivan helps student study sinkholes

02.11.2004


A Virginia Tech graduate student put a car battery and Hurricane Ivan to good use in his studies of sinkholes.



Benjamin Schwartz, a Ph.D. student in geosciences in the College of Science, who is from Doe Hill, Va., in Highland County, is using an innovative technique to characterize ground water movement in sinkholes. His goal is to recommend management strategies to reduce contamination of aquifers in regions that are rife with sinkholes. Hurricane Ivan’s downpour in Southwest Virginia allowed him to measure changes in underground water over a short 4-day period. Schwartz will present his findings at the 116th national meeting of the Geological Society of America in Denver on Nov. 7-10.

Sinkholes generally form over limestone and dolomite. That rock dissolves and the earth on the surface subsides. Water from the sinkhole either seeps into the subsurface or runs in through a fissure or cave opening and rapidly enters the aquifer. "People up and down the Shenandoah Valley get their water from aquifers," Schwartz said. "Often, these aquifers are contaminated. Sources of contamination include runoff from paved surfaces or because a good portion of Virginia’s agricultural land is on karst terrain. There is little filtration between surface water and karst aquifers." Karst is a term used for a landscape where water movement is underground because of the voids in the bedrock.


Schwartz is using six sinkholes on Virginia Tech’s Kentland Farm along the New River in Montgomery County to measure how water and contaminants move within a sinkhole, that is, thehydrology and chemical transport in a sinkhole. He is looking at depth to bedrock (soil thickness), slope within the sinkhole, drainage area, and land use – such as wood land, crop land, or pasture ("Cattle love to stand in sinkholes.") to determine if such sinkhole characteristics indicate what is happening underground.

He is using a geophysical technique called electrical resistivity. Current is passed through the soil using a car battery attached to two electrodes embedded in the soil. By using an array of 25 embedded electrodes, and by changing the locations of the current electrodes, voltages can then be measured at different electrodes in the array. Nearly 200 measurements are taken using a single array. "If you know the voltage and current, you can calculate the resistance," Schwartz said.

Different degrees of electrical resistance allows him to identify water, rock, soil, and voids to a depth of about 15 meters and create a model of the subsurface. Schwartz may also be able to determine the water’s chemistry by the changes in electrical resistance measured in an aquifer. He explains that sitting or pooled water becomes saturated with minerals while fresh rainwater has a low dissolved mineral content. Fresh water conducts electricity poorly, compared to water loaded with minerals.

Depressions in the bedrock surface can also store contaminants. When rain and runoff pour water through caverns and fissures, the contaminants are flushed out of the depressions and into the aquifer.

Schwartz took advantage of Hurricane Ivan to measure a rapid change in water movement under a sinkhole. "I went out before the hurricane and ran two transects (measurements from lines of electrodes) as a control. I left the electrodes in place then made four measurements as the storm moved through and afterwards." He says he only actually got rained on once.

The resulting two-dimensional computer model showed the changes in water movement. "I saw that water was not sinking evenly or being taken up like a sponge, but that there are preferential flow paths."

Next, he will create a 3-D model by placing the electrodes in a grid, which will allow him to add the direction of water movement to his model. He combines the electrical resistivity measurements with a topographic map of the surface to create a 3-D model of the bedrock and land surfaces. But he won’t have to wait for another hurricane. "If a rain event is predicted, I can take base line measurements then monitor the site. But another three to four inch rainfall would be nice."

Soon, to confirm his interpretations from this new use of electrical resistivity, Schwartz will drill a series of wells. Schwartz will present the paper, "Hydrologic characterization of sinkholes in agricultural settings," at 2:15 p.m. Sunday, Nov. 7, in room 205 of the Colorado Convention Center. Co-authors are Madeline Schreiber, assistant professor of geosciences at Virginia Tech, and William Orndorff of the Virginia Department of Conservation and Recreation, Division of Natural Heritage, Karst Project.

Orndorff earned his master’s degree in geosciences from Virginia Tech. Schwartz earned his bachelor’s degree in geology from Radford University. He is just beginning his Ph.D. program.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Earth Sciences:

nachricht Turning the Climate Tide by 2020
29.06.2017 | Potsdam-Institut für Klimafolgenforschung

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>