Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Contract signed for GOCE data analysis and modelling


Yesterday, an important milestone was reached in the development of ESA’s GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission, when a contract, worth €7.8 million, was signed between ESA and the Institute for Astronomical and Physical Geodesy (IAPG) from the Technical University of Munich.

The contract means that the scientific data resulting from the GOCE mission will be analysed by a consortium of 10 European universities and research institutes led by the IAPG. The consortium will then use the data to produce an unprecedented high-accuracy and high spatial-resolution global model of the Earth’s gravity field and of the geoid. Scientists from Switzerland, Germany, Denmark, the Netherlands, Austria, Italy and France will all cooperate in this project. The work will be managed by IAPG as prime contractor with the help of the National Institute of Space Research in the Netherlands (SRON).

The ceremony took place at the Technical University in Munich, Germany on 26 October when the contract was signed by Prof. Wolfgang Herrmann the President of the Technical University of Munich and Dr. Volker Liebig ESA’s Director of Earth Observation. Subsequently, all the project partners signed their contracts with the prime contractor.

GOCE, due for launch in 2006, is the first Earth Explorer Core mission to be developed as part of ESA’s Living Planet Programme. This mission, entirely dedicated to the exploration of the Earth’s gravity field, will significantly advance our knowledge in areas of solid-Earth physics, geodesy, oceanography as well as climate-change research.

The primary instrument is the newly developed gravity gradiometer. In order to attain the required sensitivity it is combined with precise GPS tracking, and active drag-free control of the spacecraft. Because the gravitational signal is stronger closer to the Earth, GOCE has been designed to fly in a particularly low orbit – at an altitude of just 250 km. The satellite has no mechanical moving parts since it has to be completely stable and rigid to ensure the acquisition of true gravity readings.

The signing of the contract for the ’GOCE High-Level Processing Facility’ ensures that the data acquired by the mission will be expertly translated into valuable information that will further our understanding of the planet.

Michael Rast | alfa
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

UCI and NASA document accelerated glacier melting in West Antarctica

26.10.2016 | Earth Sciences

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

More VideoLinks >>>