Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strong Earth tides can trigger earthquakes

22.10.2004


Earthquakes can be triggered by the Earth’s tides, UCLA scientists confirmed Oct. 21 in Science Express, the online journal of Science. Earth tides are produced by the gravitational pull of the moon and the sun on the Earth, causing the ocean’s waters to slosh, which in turn raise and lower stress on faults roughly twice a day. Scientists have wondered about the effects of Earth tides for more than 100 years. (The research will be published in the print version of Science in November.) "Large tides have a significant effect in triggering earthquakes," said Elizabeth Cochran, a UCLA graduate student in Earth and space sciences and lead author of the Science paper. "The earthquakes would have happened anyway, but they can be pushed sooner or later by the stress fluctuations of the tides."



"Scientists have long suspected the tides played a role, but no one has been able to prove that for earthquakes worldwide until now," said John Vidale, UCLA professor of Earth and space sciences, interim director of UCLA’s Institute of Geophysics and Planetary Physics, and co-author of the paper. "Earthquakes have shown such clear correlations in only a few special settings, such as just below the sea-floor or near volcanoes." "There are many mysteries about how earthquakes occur, and this clears up one of them," Vidale said. "We find that it takes about the force arising from changing the sea level by a couple of meters of water to noticeably affect the rate of earthquakes. This is a concrete step in understanding what it takes to set off an earthquake."

Cochran, Vidale and co-author Sachiko Tanaka are the first researchers to factor in both the phase of the tides and the size of the tides, and are using calculations of the effects of the tides more accurate than were available just three years ago. Tanaka is a seismologist with Japan’s National Research Institute for Earth Science and Disaster Prevention.


Cochran and Vidale analyzed more than 2,000 earthquakes worldwide, magnitude 5.5 and higher, which struck from 1977 to 2000. They studied earthquakes in "subduction zones" where one tectonic plate dives under another, such as near the coasts of Alaska, Japan, New Zealand and western South America. "These earthquakes show a correlation with tides because along continent edges ocean tides are strong," Vidale said, "and the orientation of the fault plane is better known than for faults elsewhere."

Cochran conducted a statistical analysis of the earthquakes and tidal stress data, using state-of-the-science tide calculations from Tanaka and the best global earthquake data, which came from Harvard seismologists. This research follows up on a 2002 study by Tanaka. The current research was funded by the National Science Foundation and the Laurence Livermore National Laboratory.

Cochran and Vidale found a strong correlation between when earthquakes strike and when tidal stress on fault planes is high, and the likelihood of these results occurring by chance is less than one in 10,000, Cochran said. They found that strong tides impose enough stress on shallow faults to trigger earthquakes. If the tides are very large, more than two meters, three?quarters of the earthquakes occur when tidal stress acts to encourage triggering, she found. Fewer earthquakes are triggered when the tides are smaller.

In California, and in fact in most places in the world, the correlation between earthquakes and tides is considerably smaller, Vidale said. In California, tides may vary the rate of earthquakes at most one or two percent; the overall effect of the tides is smaller, he said, because the faults studied are many miles inland from the coast and the tides are not particularly large.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>