Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Unlock Nature’s Secret Preserver - Fool’s Gold

19.10.2004


Scientists have made a rare discovery from over 500 million years ago that provides new information on how a record of the past was perfectly preserved by nature.



Geologists at the University of Leicester have found that pyrite - or fool’s gold - replaced soft tissues, thereby preserving animals to their smallest details for posterity.

Dr Sarah Gabbott and colleagues, of the University of Leicester Department of Geology, found creatures with the very hairs on their legs preserved and, in some cases, the contents of their last meals could be identified in the guts of animals. Details of how pyrite preserves these ancient creatures were published this month in Geology, published by the Geological Society of America.


Dr Gabbott said: "In the Yunnan Province, China, the Chengjiang sediments have contained within them unique and exquisitely preserved fossils. Although these animal remains are over 500 million years old nearly every detail of their anatomy can be studied, from the spiny proboscis of ancient worms to the hairs on the legs of primitive arthropods. These animals lived in the Cambrian sea and record what life was like just after the Cambrian ’evolutionary explosion’ - a crucial time in the history of life on Earth.

"Until now the processes that acted to preserve these animals have been poorly understood. Our study shows that a common mineral, pyrite (often known as fool’s gold) rapidly precipitated onto the rapidly decaying carcasses of the Chengjiang animals and faithfully captured their morphology.

"If pyrite had not replaced these tissues all of the fossils simply wouldn’t exist as many are entirely made from easily decayed soft tissues. If we didn’t have these animals preserved we would have no idea of the weird and wonderful animals of the Cambrian seas, more than 500 million years ago.

"Even more remarkable is that the type of soft tissue may have influenced the shape of the mineralizing pyrite crystals. Raspberry shaped pyrites, termed framboids, replaced easily decayed animals and tissues, whereas, perfect octahedral and cubic shapes reflect animals and tissues that were tougher and so decayed more slowly."

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Earth Sciences:

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

nachricht NASA flights gauge summer sea ice melt in the Arctic
25.07.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>