Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study provides fresh insight on volcanic eruptions

18.10.2004


Chemical signatures provide picture of internal changes leading to the 1980 eruption of Mount St. Helens



New tools for monitoring volcanoes may be developed with help from a study on Mount St. Helens published this week (Oct. 14) in Science Express by an international team of geoscientists, including University of Oregon volcanologist Katharine Cashman.
The study on geochemical precursors to volcanic activity leading to the cataclysmic eruption of the southwestern Washington mountain in 1980 yields new insight about volcano behavior. "We’re looking at chemical signatures--chemistry that’s related to volatile, or gas, phases in the eruptive cycle," says Cashman, a professor of geological sciences. "We’ve learned that the magma that erupted on May 18, 1980, had probably begun degassing for a minimum of five years before the eruption," she explains. "Then, throughout the summer of 1980, what we see is evidence that gas from the deeper magma storage system had been interacting with the magma at a shallower level."

The study provides a detailed picture of magma and gas movement during 1980. The data shows that ascending magma stalled and was stored at a depth of three to four kilometers beneath the surface.



Cashman’s in-depth knowledge of Mount St. Helens began when she served as the U.S. Geological Survey spokesperson before, during and after the 1980 eruption. Since then, she’s become an authority on volcanoes from Hawaii to Italy, where she had intended to spend the current academic year working with Italian volcanologists to compare eruptive styles at Etna, Stromboli and Vesuvius with those of the Cascades. She flew back from Italy last weekend to rejoin colleagues at Mount St. Helens where her role is to "be eyes and corporate memory from the ’80s so we can make comparisons between then and now."

This week’s ScienceExpress publication follows on the heels of a Geology magazine article (February 2004) by Cashman and Richard Hoblitt of the Hawaiian Volcano Observatory which reported that the ash Mount St. Helens spewed during the months before its huge 1980 eruption contains tiny crystals that show an explosive eruption was likely.

Cashman, whose research interests include volcanology, igneous petrology and crystallization kinetics, joined the UO faculty in 1991. Her work is funded by the National Science Foundation.

Melody Ward Leslie | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>