Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioaerosols: New element in climate mystery

15.10.2004


Parisa Ariya’s accidental discovery of the power of bioaerosols to generate rapid and dramatic chemical reactions may change – at the very least alter – the course of climate science.



Ariya, a professor at McGill University’s Department of Atmospheric and Oceanic Sciences, in Montreal (Canada), first made her observation in August 2001, after one of her postdoctoral fellows forgot to close the valve sealing the reaction chamber where an organic compound (containing carbon, oxygen and/or hydrogen) was reacting with ozone (the form of oxygen in the stratosphere that filters out ultraviolet radiation).

By Monday, the organic compound was gone, and several new peaks in the frequency regions for carbohydrates and proteins were found. A sludge had formed on the glass walls of the chamber. What was it? Ariya deduced that airborne micro-organisms in the laboratory had found their way into the chamber, consumed the organic compound and produced new aerosols in their reaction both with the compound and the ozone.


Something told Ariya that such reactions, which would take place all the time in the natural world – given that there are always bioaerosols, living or dead organic compounds in the air, such as dust, bacteria, pollen, leaf dust, viruses – might be significant in understanding climate and climate change. "Fortunately, we didn’t discard it and I was crazy enough to pursue further experiments," recalls Ariya. "What tipped me to the importance of this accident was the speed and efficiency of the chemical reactions."

Since beginning her research, Ariya has found that similar to inorganic aerosols, (such as volcanic dust), bioaerosols are capable of forming clouds. She’s examining the role they play in the interfaces between snow and air, snow and water and fog and clouds. She notes that bioaerosols were long suggested to play a role as ice nuclei for cloud formation, yet their impact on driving chemistry and impact of chemical reactions on physics of atmosphere were not considered.

What’s most significant about Ariya’s work is how, until now, no scientist has included bioaerosols in climate research because their numbers were considered insignificant as compared to inorganic aerosols.

Sylvain-Jacques Desjardins | EurekAlert!
Further information:
http://www.mcgill.ca

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>