Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioaerosols: New element in climate mystery

15.10.2004


Parisa Ariya’s accidental discovery of the power of bioaerosols to generate rapid and dramatic chemical reactions may change – at the very least alter – the course of climate science.



Ariya, a professor at McGill University’s Department of Atmospheric and Oceanic Sciences, in Montreal (Canada), first made her observation in August 2001, after one of her postdoctoral fellows forgot to close the valve sealing the reaction chamber where an organic compound (containing carbon, oxygen and/or hydrogen) was reacting with ozone (the form of oxygen in the stratosphere that filters out ultraviolet radiation).

By Monday, the organic compound was gone, and several new peaks in the frequency regions for carbohydrates and proteins were found. A sludge had formed on the glass walls of the chamber. What was it? Ariya deduced that airborne micro-organisms in the laboratory had found their way into the chamber, consumed the organic compound and produced new aerosols in their reaction both with the compound and the ozone.


Something told Ariya that such reactions, which would take place all the time in the natural world – given that there are always bioaerosols, living or dead organic compounds in the air, such as dust, bacteria, pollen, leaf dust, viruses – might be significant in understanding climate and climate change. "Fortunately, we didn’t discard it and I was crazy enough to pursue further experiments," recalls Ariya. "What tipped me to the importance of this accident was the speed and efficiency of the chemical reactions."

Since beginning her research, Ariya has found that similar to inorganic aerosols, (such as volcanic dust), bioaerosols are capable of forming clouds. She’s examining the role they play in the interfaces between snow and air, snow and water and fog and clouds. She notes that bioaerosols were long suggested to play a role as ice nuclei for cloud formation, yet their impact on driving chemistry and impact of chemical reactions on physics of atmosphere were not considered.

What’s most significant about Ariya’s work is how, until now, no scientist has included bioaerosols in climate research because their numbers were considered insignificant as compared to inorganic aerosols.

Sylvain-Jacques Desjardins | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>