Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ASU research reveals the dynamic inner workings of Earth

08.10.2004


Research at Arizona State University hints to a very active inner Earth area as depicted by these drawings. Image on the left is of Earth. The center image shows a section of Earth and its main divisions (solid inner core, liquid outer core and the lower mantle) including the D" zone. The image on the right is a zoom in of the D" region, which was studied by Edward Garnero and his colleagues. The researchers found strong topographical variations of the D" layer. It was detected as geographical variations in the inferred seismic anisotropy, the alignment of fabric or crystals in rocks.


At the surface of Earth, life on a geologic scale is calm and peaceful save the occasional earthquake caused by the rub and slip of Earth’s tectonic plates. But below Earth’s surface, scientists are beginning to find a far more dynamic and tumultuous region than previously thought.

Deep inside Earth, where the mantle meets the molten iron core, researchers are finding telltale signs of what could be a highly active area filled with exotic forms and substances. "This layer is far more complex than what we thought 10 years ago," said Arizona State University seismologist Edward Garnero. "It is a super dynamic situation, probably the most exotic part of Earth’s interior. This area, where the mantle meets the core halfway to Earth’s center (2,900 km below Earth’s surface), the change in density is several times greater than what we find at Earth’s surface, as represented by air and rock."

Garnero and a team of seismologists (Valerie Maupin, of the University of Oslo, Norway; Thorne Lay of the University of California, Santa Cruz; and Matthew Fouch of ASU) recently completed a study of Earth’s interior. They report their findings in the Oct. 8 issue of Science magazine. In "Variable Azimuthal Anisotropy in Earth’s Lowermost Mantle," the ASU researchers decipher unusual layering in Earth’s deep interior that may contain clues about how the interior churns and convects, and the relationship between Earth’s interior and its ever evolving surface.



The deep mantle region the team probed is a several-hundred-kilometer-thick zone called D" (D double prime), which is where the silicate rock lower mantle meets Earth’s liquid iron outer core. The researchers used seismic waves, those generated by earthquakes, to probe this region. They measured unique directional vibrations of seismic waves recorded in North America from South American earthquakes, permitting a detailed probing of D" beneath Central America and the Caribbean Ocean. Garnero and his colleagues found unexpected wave vibration directions from these waves and showed the deepest mantle to be the source of these wave motion alignment changes.

Tilting of the once horizontal rock fabric in the lower mantle by 20 degrees explains the observation, where the fabric contortions must vary over relatively short distances (hundreds of kilometers). The seismic readings indicate a complex area that churns and chugs as the liquid iron core roils at the bottom of the rock-like mantle, Garnero said. "We were detecting changes in the directional dependency over a relatively small size scale of a few hundred kilometers," Garnero said. "We think there must be currents and turbulence over geologic type time scales that are really quite vigorous and which are occurring at short lengths in order to stir things in such a way as to give this preferred alignment of the material.

Garnero explained that what the seismic waves may be detecting are areas where there are dramatic differences in the types of materials inside Earth. "At the core mantle boundary layer there’s a huge contrast in density," Garnero said. "You go from silicate-based rock (the mantle) to a liquid iron material really rapidly. The environment has all of the markings of something that may be more complex than what we see at the surface."

"What hasn’t been appreciated is that in the deepest mantle there are incredible changes from place to place geographically over short distances," he added. "These changes represent a very dynamic mantle system." "The center of the planet is thought to be as hot as the surface of the Sun, so this is a planet that is going to take some time to cool off," Garnero explained. "It cools off through this stirring and internal mixing."

Garnero said this research is helping reshape the contemporary view of the inner workings of Earth. "In the past 10 to 15 years we have come to appreciate the importance of deciphering the lowest couple of hundred kilometers of the mantle. Doing so is critical in understanding how the interior of Earth actually turns and convects, and drives these motions that we see at the surface," Garnero said. "This research supports a new view of the deepest mantle, where the evolution and dynamics of Earth as a whole cannot be understood without first deciphering the D" layer."

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>