Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows potential for Antarctic climate change

07.10.2004


While Antarctica has mostly cooled over the last 30 years, the trend is likely to rapidly reverse, according to a computer model study by NASA researchers. The study indicates the South Polar Region is expected to warm during the next 50 years.



Findings from the study, conducted by researchers Drew Shindell and Gavin Schmidt of NASA’s Goddard Institute of Space Studies (GISS), New York, appeared in the Geophysical Research Letters. Shindell and Schmidt found depleted ozone levels and greenhouse gases are contributing to cooler South Pole temperatures.

Low ozone levels in the stratosphere and increasing greenhouse gases promote a positive phase of a shifting atmospheric climate pattern in the Southern Hemisphere, called the Southern Annular Mode (SAM). A positive SAM isolates colder air in the Antarctic interior.


In the coming decades, ozone levels are expected to recover due to international treaties that banned ozone-depleting chemicals. Higher ozone in the stratosphere protects Earth’s surface from harmful ultraviolet radiation. The study found higher ozone levels might have a reverse impact on the SAM, promoting a warming, negative phase. In this way, the effects of ozone and greenhouse gases on the SAM may cancel each other out in the future. This could nullify the SAM’s affects and cause Antarctica to warm. "Antarctica has been cooling, and one could argue some regions could escape warming, but this study finds this is not very likely," Shindell said. "Global warming is expected to dominate in future trends."

The SAM, similar to the Arctic Oscillation or Northern Annular Mode in the Northern Hemisphere, is a seesaw in atmospheric pressure between the pole and the lower latitudes over the Southern Ocean and the tip of South America.

These pressure shifts between positive and negative phases speed-up and slow down the westerly winds that encircle Antarctica. Since the late 1960s, the SAM has more and more favored its positive phase, leading to stronger westerly winds. These stronger westerly winds act as a kind of wall that isolates cold Antarctic air from warmer air in the lower latitudes, which leads to cooler temperatures.

Greenhouse gases and ozone depletion both lower temperatures in the high latitude stratosphere. The cooling strengthens the stratospheric whirling of westerly winds, which in turn influences the westerly winds in the lower atmosphere. According to the study, greenhouse gases and ozone have contributed roughly equally in promoting a strong-wind, positive SAM phase in the troposphere, the lowest part of the atmosphere.

Shindell and Schmidt used the NASA GISS Climate Model to run three sets of tests, each three times. For each scenario, the three runs were averaged together. Scenarios included the individual effects of greenhouse gases and ozone on the SAM, and then a third run that examined the effects of the two together. The model included interactions between the oceans and atmosphere. Each model run began in 1945 and extended through 2055. For the most part, the simulations matched well compared with past observations.

Model inputs of increasing greenhouse gases were based upon observations through 1999, and upon the Intergovernmental Panel on Climate Change mid-range estimates of future emissions. Stratospheric ozone changes were based on earlier NASA GISS model runs that were found to be in good agreement with past observations and similar to those found in other chemistry-climate models for the future.

Shindell said the biggest long-term danger of global warming in this region would be ice sheets melting and sliding into the ocean. "If Antarctica really does warm up like this, then we have to think seriously about what level of warming might cause the ice sheets to break free and greatly increase global sea levels," he said.

In the Antarctic Peninsula, ice sheets as big as Rhode Island have already collapsed into the ocean due to warming. The warming in this area is at least partially a result of the strengthened westerly winds that pass at latitudes of about 60 to 65 degrees south. As the peninsula sticks out from the continent, these winds carry warm maritime air that heats the peninsula.

Krishna Ramanujan | EurekAlert!
Further information:
http://www.gsfc.nasa.gov

More articles from Earth Sciences:

nachricht A new dead zone in the Indian Ocean could impact future marine nutrient balance
06.12.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>