Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Primary instrument is delivered for ESA’s CryoSat mission

06.10.2004


Due for launch next spring, ESA’s ice mission CryoSat marked an important milestone last week when the innovative SAR/Interferometric Radar Altimeter (SIRAL) instrument was delivered to the prime contractor Astruim GmbH for integration into the satellite.



Developed by Alcatel Space, the SIRAL radar altimeter is the key instrument to be carried on the CryoSat mission. Its design is based on heritage from existing radar altimeters but with a number of sophisticated enhancements to overcome the challenges of measuring two different kinds of ice cover. SIRAL will be able to acquire very precise measurements of the thickness of relatively thin floating sea-ice so that annual variations can be observed, and also accurately survey the surface of polar ice-sheets, which are kilometres thick, in order to detect any small changes.

CryoSat is the first Earth Explorer satellite to be launched as part of ESA’s Living Planet Programme. It is now generally agreed that the Earth’s atmosphere is warming, however, it is very difficult to predict what effect this is having on polar ice cover. Since ice plays such an important role in the regulation of the Earth’s climate and sea-level height, it is crucial to determine any change in the thickness of marine and continental ice cover.


Orbiting the Earth at an unusually high inclination and reaching latitudes of 88° North and South on every orbit, CryoSat will provide estimates of sea-ice thickness for the whole Arctic basin and monitor thickness changes in ice sheets, particularly around the edges where icebergs break off. The main aim of the mission is to provide conclusive evidence as to whether the ice is really thinning and consequently advance our understanding of the relationship between ice and global climate.

In order to meet the mission’s demanding measuring requirements, an extremely specialised radar altimeter had to be developed and the result is the highly innovative SIRAL instrument. Weighing just 70 kilograms, it combines three measurement modes: Low-resolution, for conventional altimetric measurements limited to the relatively flat relief of continental ice fields both on land and at sea. Synthetic Aperture Radar mode, to provide high-resolution measurements of floating sea-ice.

Interferometric radar mode to study sharper relief areas, such as the very active transition areas where ice fields join the continental shelf. The CryoSat satellite is currently undergoing final environmental testing at the Space Test Centre at IAGB (Industrieanlagen Betriebsgellschaft mbH) and now that the key SIRAL instrument has been delivered, integration will begin shortly.

Guy Ratier, ESA’s CryoSat Project Manager said, "Indeed, the arrival of the flight model of SIRAL at IABG is a major step in the assembly and integration activities of the CryoSat Satellite. We are all eager to see this complex payload being operated with the spacecraft. Performance predictions are excellent and based on tests performed so far with the engineering model, we are quite confident of the successful outcome of the integration campaign starting now."

CryoSat is due to be shipped to the launch site in Plesetsk, Russia in mid-February ready for launch, which is scheduled for 25 March 2005.

Michael Rast | alfa
Further information:
http://www.esa.int

More articles from Earth Sciences:

nachricht Mountain glaciers shrinking across the West
23.10.2017 | University of Washington

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>