Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twentieth “Polarstern” expedition to Arctic is drawing to a close

04.10.2004


On October 3rd, the German research vessel “Polarstern” of the Alfred Wegener Institute for Polar and Marine Research will return to Bremerhaven from its 20th arctic expedition. During the last leg of the voyage, 44 scientists from Germany, Russia and South Korea, supported by crew members, helicopter pilots and technical staff, investigated the region north and west of Spitsbergen. Emphasis was placed on geophysical and geological studies of Fram Strait and Yermak Plateau. Of primary importance were seismic surveys of the upper kilometres of the ocean floor, and the sampling of sediments by means of various sounding devices.



The large sliding masses on the northern continental edge of Spitsbergen were among those investigated within the framework of the geology programme. Sliding masses are the result of major sediment shifts, which occur as a consequence of sudden events, such as earth quakes or instabilities on the upper continental slope following massive increases in sediment influx. The investigations are part of the international research project “Euromargins”. Of particular interest in this context are dating such events, estimating the magnitude of shifted sediments and interpreting the data sets with regard to climate changes during the past 150,000 years.

Fram Strait is the only deep water connection between the Arctic and the world’s oceans. In its centre, an active, slowly widening mid oceanic ridge is, even today, the reason why Spitsbergen is moving away from Greenland. According to current knowledge, the influx of cold arctic water through Fram Strait has been of major significance for the frequent cycles between warm periods and ice ages over the last millions of years. However, details about the temporal sequence of tectonic plate movement, important information for exact climate reconstructions, remain highly speculative.


“In particular, the new seismic data sets will enable scientist to improve the planning and implementation of scientific deep drilling expeditions to Fram Strait, Yermak Plateau and the region near East Greenland within the international drilling programme IOPD (Integrated Ocean Drilling Program)”, says expedition leader Prof Dr Rüdiger Stein of the Alfred Wegener Institute. “These drillings in the Arctic represent a major challenge for marine geosciences. They will contribute to solving the great mystery of changes in Arctic plate tectonics and paleaoclimate during the course of the past 120 Million years”, explains Stein.

A reconnaissance trip dedicated to the lost German arctic expedition of 1912 has been added to the expedition programme. Scientists of the Max-Planck-Institute in Seewiesen identified and recorded the expedition’s landing site in Duvefjord (Nordaustland, Spitsbergen at 80.17 N, 24.10 E) as well as the landing site of a secondary expedition in 1913 in Beverlysund, near North Cape, where the expedition vessel “Loevens-Kioeld” froze in pack ice and sank in 1912. The location of the sinking has been narrowed down with the help of historical stereo images and field surveys. The ship is the most northerly positioned wreck in the world, and is scheduled to be studied in detail using the dive vessel “Jago” in 2006.

“Polarstern” will undergo some maintenance work in the dockyard in Bremerhaven, during which time it will be prepared for its 22nd expedition to Antarctica beginning October 12th.

Ingrid Zondervan | alfa
Further information:
http://www.awi-bremerhaven.de

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>