Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twentieth “Polarstern” expedition to Arctic is drawing to a close

04.10.2004


On October 3rd, the German research vessel “Polarstern” of the Alfred Wegener Institute for Polar and Marine Research will return to Bremerhaven from its 20th arctic expedition. During the last leg of the voyage, 44 scientists from Germany, Russia and South Korea, supported by crew members, helicopter pilots and technical staff, investigated the region north and west of Spitsbergen. Emphasis was placed on geophysical and geological studies of Fram Strait and Yermak Plateau. Of primary importance were seismic surveys of the upper kilometres of the ocean floor, and the sampling of sediments by means of various sounding devices.



The large sliding masses on the northern continental edge of Spitsbergen were among those investigated within the framework of the geology programme. Sliding masses are the result of major sediment shifts, which occur as a consequence of sudden events, such as earth quakes or instabilities on the upper continental slope following massive increases in sediment influx. The investigations are part of the international research project “Euromargins”. Of particular interest in this context are dating such events, estimating the magnitude of shifted sediments and interpreting the data sets with regard to climate changes during the past 150,000 years.

Fram Strait is the only deep water connection between the Arctic and the world’s oceans. In its centre, an active, slowly widening mid oceanic ridge is, even today, the reason why Spitsbergen is moving away from Greenland. According to current knowledge, the influx of cold arctic water through Fram Strait has been of major significance for the frequent cycles between warm periods and ice ages over the last millions of years. However, details about the temporal sequence of tectonic plate movement, important information for exact climate reconstructions, remain highly speculative.


“In particular, the new seismic data sets will enable scientist to improve the planning and implementation of scientific deep drilling expeditions to Fram Strait, Yermak Plateau and the region near East Greenland within the international drilling programme IOPD (Integrated Ocean Drilling Program)”, says expedition leader Prof Dr Rüdiger Stein of the Alfred Wegener Institute. “These drillings in the Arctic represent a major challenge for marine geosciences. They will contribute to solving the great mystery of changes in Arctic plate tectonics and paleaoclimate during the course of the past 120 Million years”, explains Stein.

A reconnaissance trip dedicated to the lost German arctic expedition of 1912 has been added to the expedition programme. Scientists of the Max-Planck-Institute in Seewiesen identified and recorded the expedition’s landing site in Duvefjord (Nordaustland, Spitsbergen at 80.17 N, 24.10 E) as well as the landing site of a secondary expedition in 1913 in Beverlysund, near North Cape, where the expedition vessel “Loevens-Kioeld” froze in pack ice and sank in 1912. The location of the sinking has been narrowed down with the help of historical stereo images and field surveys. The ship is the most northerly positioned wreck in the world, and is scheduled to be studied in detail using the dive vessel “Jago” in 2006.

“Polarstern” will undergo some maintenance work in the dockyard in Bremerhaven, during which time it will be prepared for its 22nd expedition to Antarctica beginning October 12th.

Ingrid Zondervan | alfa
Further information:
http://www.awi-bremerhaven.de

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>