Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist Finds Evidence of High Iron Content Beneath Hawaii

04.10.2004


A new set of measurements has allowed a Florida State University geochemist to confirm what other scientists have only suspected about what lies deep below the Earth’s surface.



Professor Munir Humayun has found that there is a higher iron content in the Earth’s mantle beneath Hawaii compared to other regions of the mantle. Hotspot islands, such as Hawaii, arise from hot plumes of solid rock from deep within the mantle or the core-mantle boundary that ascend at rates of a few centimeters per year.

While seismologists had long thought that the Earth’s deep mantle - the rocky layer between 1,000 to 3,000 kilometers deep - beneath the Hawaiian islands has a higher concentration of iron, no one had ever precisely measured it until now, according to Humayun. Iron is one of the four main components of the mantle. "This is a major intellectual advance for science," Humayun said. "The fact that scientists can stand on the Earth’s surface and tell you what’s going on 3,000 kilometers below is a real breakthrough."


Humayun of the National High Magnetic Field Laboratory and geological sciences department at FSU, Liping Qin of the University of Chicago and Marc Norman of Australian National University found that lavas from Hawaii were about 10 percent higher in iron relative to manganese and other elements compared to rocks from other volcanic regions, particularly the volcanic mountains along the mid-oceanic ridges that form the division between the Earth’s tectonic plates. Their findings are published in the Oct. 1 issue of the journal Science. "The 10 percent was the number seismologists were looking for," Humayun said. "They were right, and we are the first to confirm it."

The findings show that iron is higher in the deep mantle, compared with the upper mantle above about 1,000 kilometers. Humayun theorizes that the excess iron was introduced into the mantle by chemical reactions between rock and liquid metal at the boundary between the Earth’s core and mantle.

To get the high quality measurements, Humayun, Qin and Norman used a magnetic sector mass spectrometer instrument to compare the ratio of iron to manganese, a related element that behaves similarly to iron, in lava samples from Hawaii. Their findings are significant because of the possibility that earth scientists may be able to use this method to find out more about the iron-rich core, below the mantle. "This is of enormous interest to scientists studying the Earth’s deep interior," Humayun said.

| newswise
Further information:
http://www.fsu.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>