Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Midwest Thunderstorm Study Points toward Better Forecasts

28.09.2004


A set of newly documented small-scale circulations embedded in thunderstorm squall lines not only spew destructive straight-line winds, but may spawn up to 20% of all U.S. tornadoes. And the remnant circulations from large thunderstorm clusters can survive for days, triggering new storm cells. Over warm oceans, similar remnant circulations provide seed for hurricane development. Scientists expect these and other findings to help improve forecasts of damaging winds and heavy rain.


This Doppler radar image collected by the National Weather Service on the evening of June 11, 2001, shows a strong bow echo moving southeast across Wisconsin. (Image courtesy National Oceanic and Atmospheric Administration)


This menacing cloud was part of a mesoscale convective system studied in a previous Montana field project. Such systems, dominated by strong, outflowing winds and heavy rain, were the focus of the Bow Echo and MCV Experiment.



The new results emerge from three-dimensional portraits of thunderstorms collected across the storm-tossed Midwest in a field study coordinated by the National Center for Atmospheric Research (NCAR) in 2003. A summary will be presented on October 5 in Hyannis, Massachusetts at the American Meteorological Society’s 22nd Conference on Severe Local Storms.

Based just east of St. Louis, the Bow Echo and MCV Experiment (BAMEX) employed aircraft and ground-based storm chasers to document a wide range of storm types that prowled the Midwest from May to July 2003. Over a dozen colleges and universities joined NCAR and the National Oceanic and Atmospheric Administration (NOAA) for BAMEX. Key funding for the $4 million study was provided by the National Science Foundation, NCAR’s primary sponsor.


Among the most noteworthy results:

Size doesn’t equal strength when it comes to bow echoes, the arc-shaped squall lines that produce intense straight-line winds and spawn dozens of tornadoes each year. “The greatest damage was typically observed not in the most extensive bow echoes, but in smaller ones spanning 60 miles or less,” says NCAR scientist Christopher Davis, co-science director of BAMEX. Within these small bows, even smaller circulations appear to focus most of the storm’s destructive power and the highest risk for tornadoes.

Mesoscale convective vortices (MCVs)—areas of low pressure similar in strength and size to weak tropical depressions—extend through a deep layer of the atmosphere. These MCVs, which can trigger multiday rounds of intense thunderstorms, tend to destabilize the atmosphere as they pull warm, moist surface air northward.

Harbingers of high wind

Up to now, forecasters haven’t been able to tell in advance just when an intense thunderstorm might morph into a destructive bow echo. The process appears to hinge on small-scale factors that everyday weather observations can’t trace and radar operators can’t easily spot.

BAMEX captured this near-storm environment in detail with Doppler radars aboard P-3 aircraft from NOAA and the Naval Research Laboratory. Ground crews launched more than 200 radiosondes (weather balloons), while a Lear Jet dropped more than 400 parachute-based dropsondes.

The result is a set of three-dimensional portraits that will help scientists unravel the processes driving the high winds and heavy rains of bow echoes. For instance, about two hours after damaging winds struck eastern Nebraska on the night of June 9, 2003, BAMEX aircraft showed winds of over 90 miles an hour howling less than a mile and a half above ground level, even as the surface winds had decreased.

“With the data from BAMEX, we’ll be studying several indicators that might provide advance notice of when severe surface winds might develop,” says Davis. These include local enhancement of thunderstorm cells within a line, bands of convergent wind at the surface that feed into a thunderstorm complex at right angles, and other characteristic wind signatures detected aloft by Doppler radar. Forecasters from the National Weather Service (NWS) joined NCAR and university collaborators in gaining a better awareness and understanding of bow echoes through BAMEX, Davis says.

When one storm complex leads to another

Whether over land or sea, thunderstorm complexes can generate broad areas of low pressure, from about 30 to 200 miles in width, that survive after the storms die off. Once formed, one of these mesoscale convective vortices (MCVs) can merge with a cold front, grow to become a larger center of low pressure, and/or generate new thunderstorms for one or more days. It may even become the seed of a tropical or subtropical cyclone if it passes over warm ocean water.

“There’s remarkable continuity in the spectrum of cyclones as you go from midlatitudes to the tropics,” says Davis. “I’m confident that there are some real similarities among these cyclones, especially in the early stages of development.”

A sharper picture of future storms

The Weather Research and Forecasting computer model, soon to enter regular use at the NWS, showed surprising skill at high resolution in projecting storm types 24 to 36 hours in advance during the 2003 BAMEX field campaign, according to NCAR’s Morris Weisman, one of the project’s lead scientists. The special simulations were performed again this summer at NCAR and made available to NWS forecasters on line. At its finest resolution of about 2.5 miles, the model can help forecasters determine whether to expect squall lines, isolated supercells, or other types of storms.

“The output was used daily by forecasters across most of the central United States,” says Weisman. “They’ve told us this new information is really valuable to their outlooks.”

Anatta | EurekAlert!
Further information:
http://www.ucar.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>