Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Midwest Thunderstorm Study Points toward Better Forecasts

28.09.2004


A set of newly documented small-scale circulations embedded in thunderstorm squall lines not only spew destructive straight-line winds, but may spawn up to 20% of all U.S. tornadoes. And the remnant circulations from large thunderstorm clusters can survive for days, triggering new storm cells. Over warm oceans, similar remnant circulations provide seed for hurricane development. Scientists expect these and other findings to help improve forecasts of damaging winds and heavy rain.


This Doppler radar image collected by the National Weather Service on the evening of June 11, 2001, shows a strong bow echo moving southeast across Wisconsin. (Image courtesy National Oceanic and Atmospheric Administration)


This menacing cloud was part of a mesoscale convective system studied in a previous Montana field project. Such systems, dominated by strong, outflowing winds and heavy rain, were the focus of the Bow Echo and MCV Experiment.



The new results emerge from three-dimensional portraits of thunderstorms collected across the storm-tossed Midwest in a field study coordinated by the National Center for Atmospheric Research (NCAR) in 2003. A summary will be presented on October 5 in Hyannis, Massachusetts at the American Meteorological Society’s 22nd Conference on Severe Local Storms.

Based just east of St. Louis, the Bow Echo and MCV Experiment (BAMEX) employed aircraft and ground-based storm chasers to document a wide range of storm types that prowled the Midwest from May to July 2003. Over a dozen colleges and universities joined NCAR and the National Oceanic and Atmospheric Administration (NOAA) for BAMEX. Key funding for the $4 million study was provided by the National Science Foundation, NCAR’s primary sponsor.


Among the most noteworthy results:

Size doesn’t equal strength when it comes to bow echoes, the arc-shaped squall lines that produce intense straight-line winds and spawn dozens of tornadoes each year. “The greatest damage was typically observed not in the most extensive bow echoes, but in smaller ones spanning 60 miles or less,” says NCAR scientist Christopher Davis, co-science director of BAMEX. Within these small bows, even smaller circulations appear to focus most of the storm’s destructive power and the highest risk for tornadoes.

Mesoscale convective vortices (MCVs)—areas of low pressure similar in strength and size to weak tropical depressions—extend through a deep layer of the atmosphere. These MCVs, which can trigger multiday rounds of intense thunderstorms, tend to destabilize the atmosphere as they pull warm, moist surface air northward.

Harbingers of high wind

Up to now, forecasters haven’t been able to tell in advance just when an intense thunderstorm might morph into a destructive bow echo. The process appears to hinge on small-scale factors that everyday weather observations can’t trace and radar operators can’t easily spot.

BAMEX captured this near-storm environment in detail with Doppler radars aboard P-3 aircraft from NOAA and the Naval Research Laboratory. Ground crews launched more than 200 radiosondes (weather balloons), while a Lear Jet dropped more than 400 parachute-based dropsondes.

The result is a set of three-dimensional portraits that will help scientists unravel the processes driving the high winds and heavy rains of bow echoes. For instance, about two hours after damaging winds struck eastern Nebraska on the night of June 9, 2003, BAMEX aircraft showed winds of over 90 miles an hour howling less than a mile and a half above ground level, even as the surface winds had decreased.

“With the data from BAMEX, we’ll be studying several indicators that might provide advance notice of when severe surface winds might develop,” says Davis. These include local enhancement of thunderstorm cells within a line, bands of convergent wind at the surface that feed into a thunderstorm complex at right angles, and other characteristic wind signatures detected aloft by Doppler radar. Forecasters from the National Weather Service (NWS) joined NCAR and university collaborators in gaining a better awareness and understanding of bow echoes through BAMEX, Davis says.

When one storm complex leads to another

Whether over land or sea, thunderstorm complexes can generate broad areas of low pressure, from about 30 to 200 miles in width, that survive after the storms die off. Once formed, one of these mesoscale convective vortices (MCVs) can merge with a cold front, grow to become a larger center of low pressure, and/or generate new thunderstorms for one or more days. It may even become the seed of a tropical or subtropical cyclone if it passes over warm ocean water.

“There’s remarkable continuity in the spectrum of cyclones as you go from midlatitudes to the tropics,” says Davis. “I’m confident that there are some real similarities among these cyclones, especially in the early stages of development.”

A sharper picture of future storms

The Weather Research and Forecasting computer model, soon to enter regular use at the NWS, showed surprising skill at high resolution in projecting storm types 24 to 36 hours in advance during the 2003 BAMEX field campaign, according to NCAR’s Morris Weisman, one of the project’s lead scientists. The special simulations were performed again this summer at NCAR and made available to NWS forecasters on line. At its finest resolution of about 2.5 miles, the model can help forecasters determine whether to expect squall lines, isolated supercells, or other types of storms.

“The output was used daily by forecasters across most of the central United States,” says Weisman. “They’ve told us this new information is really valuable to their outlooks.”

Anatta | EurekAlert!
Further information:
http://www.ucar.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>