Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New frictional motion study could provide tool for earthquake prediction

27.09.2004


A new study on “waves (or fronts) of detachment” involved in the process of friction offers a new perspective on an old scientific puzzle and could provide a key to improving predictions of future earthquakes, say scientists at the Hebrew University of Jerusalem.


Top illustration shows two surfaces, greatly enlarged, with the microcontacts connecting them. In the middle illustration, the surfaces are starting to move against each other, with the microcontacts being broken. In the bottom drawing, sliding takes place as a slow-motion wave (white area) moves between the surfaces.



The work of the scientists, Prof Jay Fineberg, head of the Hebrew University’s Racah Institute of Physics, Dr Gil Cohen and graduate student Shmuel N Rubinstein, is described in an article in the journal Nature entitled “Detachment Fronts and the Onset of Dynamic Friction.”

Though studied for hundreds of years by names as distinguished as Leonardo da Vinci, and physicists Charles Augustin de Coulomb and Heinrich Rudolf Hertz, the study of friction remains as intriguingly current today as it was 500 years ago. Scientists have yet to fully decipher the fundamental mechanisms of friction – that is, what goes on when two surfaces begin to slide against one another?


Using near-field optics and recent technological advances in rapid imaging, the Hebrew University researchers have observed for the first time how three different types of waves govern the onset of friction. These waves, which function within the micron-thick interface between sliding surfaces, move at widely different velocities, from sonic and supersonic and down to slow speeds. The researchers showed that detachment – the actual separation of the points of microcontact between one surface and another that occurs during frictional movement – is governed mainly by the newly discovered, slow-wave phase.

These findings, says Prof Fineberg, have relevance for the issue of earthquake measurement and predictions, as well as for other future scientific and industrial applications. (Over 5 percent of losses due to both wear and energy dissipation in industry are due to friction, resulting in the loss of hundreds of billions of dollars a year worldwide, says Prof Fineberg.)

An earthquake is felt (and is measured seismically) as a sudden, rapid movement, or sliding, of tectonic plates in a frictional action, says Fineberg. However -- based on the Hebrew University researchers’ findings -- it would seem that it is actually the slow, “unfelt” or “silent” waves in the earth’s crust to which we should be paying closer attention and that are apparently the precursors of the frictional movement that we call earthquakes, says Fineberg.

These waves, though not actually felt, can be measured, Fineberg says, by applying the technology developed on a micro-scale in the Hebrew University laboratories to the macro-scale of sub-surface earth measurements. By doing so, it might be possible to prevent to some extent earthquake-related damage through warnings of approaching “detachment” of earth plates.

Jerry Barach | alfa
Further information:
http://www.huji.ac.il

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>