Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New frictional motion study could provide tool for earthquake prediction

27.09.2004


A new study on “waves (or fronts) of detachment” involved in the process of friction offers a new perspective on an old scientific puzzle and could provide a key to improving predictions of future earthquakes, say scientists at the Hebrew University of Jerusalem.


Top illustration shows two surfaces, greatly enlarged, with the microcontacts connecting them. In the middle illustration, the surfaces are starting to move against each other, with the microcontacts being broken. In the bottom drawing, sliding takes place as a slow-motion wave (white area) moves between the surfaces.



The work of the scientists, Prof Jay Fineberg, head of the Hebrew University’s Racah Institute of Physics, Dr Gil Cohen and graduate student Shmuel N Rubinstein, is described in an article in the journal Nature entitled “Detachment Fronts and the Onset of Dynamic Friction.”

Though studied for hundreds of years by names as distinguished as Leonardo da Vinci, and physicists Charles Augustin de Coulomb and Heinrich Rudolf Hertz, the study of friction remains as intriguingly current today as it was 500 years ago. Scientists have yet to fully decipher the fundamental mechanisms of friction – that is, what goes on when two surfaces begin to slide against one another?


Using near-field optics and recent technological advances in rapid imaging, the Hebrew University researchers have observed for the first time how three different types of waves govern the onset of friction. These waves, which function within the micron-thick interface between sliding surfaces, move at widely different velocities, from sonic and supersonic and down to slow speeds. The researchers showed that detachment – the actual separation of the points of microcontact between one surface and another that occurs during frictional movement – is governed mainly by the newly discovered, slow-wave phase.

These findings, says Prof Fineberg, have relevance for the issue of earthquake measurement and predictions, as well as for other future scientific and industrial applications. (Over 5 percent of losses due to both wear and energy dissipation in industry are due to friction, resulting in the loss of hundreds of billions of dollars a year worldwide, says Prof Fineberg.)

An earthquake is felt (and is measured seismically) as a sudden, rapid movement, or sliding, of tectonic plates in a frictional action, says Fineberg. However -- based on the Hebrew University researchers’ findings -- it would seem that it is actually the slow, “unfelt” or “silent” waves in the earth’s crust to which we should be paying closer attention and that are apparently the precursors of the frictional movement that we call earthquakes, says Fineberg.

These waves, though not actually felt, can be measured, Fineberg says, by applying the technology developed on a micro-scale in the Hebrew University laboratories to the macro-scale of sub-surface earth measurements. By doing so, it might be possible to prevent to some extent earthquake-related damage through warnings of approaching “detachment” of earth plates.

Jerry Barach | alfa
Further information:
http://www.huji.ac.il

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>