Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strong quake could trigger a tsunami in Southern California

24.09.2004


With a strong enough jolt — a 7.6 -magnitude earthquake — the seafloor under Catalina Island could be violently thrust upward, causing a tsunami along the Southern California coast, according to researchers at the University of Southern California.


Map of offshore Southern California, showing areas (red) where restraining bends have created uplift on the sea floor. During an earthquake, these bends can push the seafloor up and generate a tsunami.



In a pair of journal articles published this month, researchers at the Viterbi School of Engineering described the tsunami hazard associated with offshore faults, including one that lies under Santa Catalina Island, just 25 miles off the Los Angeles coast.

“Catalina Island itself exists due to earthquake-related uplift on a geologic structure known as a restraining bend,” said Mark Legg, a geophysicist working with the USC researchers, in the August issue of Earthquake Spectra. “Although most faults offshore Los Angeles and Orange counties are mostly strike-slip — faults that move side to side — bends in the fault line produce areas where the ground is pushed up during major earthquakes. One of these regions lies directly below Santa Catalina Island.”


Strike slip faults are not straight," added Jose C. Borrero, assistant research professor in the USC Viterbi School, who worked with co-researcher Costas E. Synloakis, USC professor of civil and environmental engineering, on the study. "Bends in the fault trace produce regions where earthquake stresses cause the sea floor to pop up and generate a tsunami.

When a large earthquake occurs at a restraining bend, like the bend under Catalina Island, the ground is pushed up and, in turn, pushes up the entire region that has created the island and its offshore flanks. “Future earthquakes will push the region up further, possibly resulting in a tsunami,” Legg warned. “Tsunami” is a Japanese word for waves caused by large motions of the sea floor, either through earthquakes, landslides or undersea volcanoes. They are generally associated with earthquakes that occur offshore and produce significant uplifting of the sea floor.

Legg, who was awarded a fellowship through the National Earthquake Hazards Reduction Program to conduct research at the USC Viterbi School of Engineering, combined his earthquake modeling with computer simulation techniques developed at the university. “We took a range of potential earthquakes and investigated the tsunami potential from each case,” Borrero explained. “We found there is significant amplification of tsunami energy into San Pedro Bay.”

The findings have important implications because San Pedro Bay’s south-facing shores are home to the largest container ports in the United States — the ports of Los Angeles and Long Beach. Billions of dollars of materials pass through these ports every day. A large earthquake and tsunami could bring commerce to a halt, seriously impacting not only California’s economy but the nation’s economy.

“A magnitude 7.6 earthquake could cause seafloor uplift of six feet or more,” Borrero said. “That, in turn, would disturb the sea surface by the same amount, resulting in a tsunami. The shallow San Pedro shelf offshore of Long Beach focuses the waves and amplifies them by one-and-a -half times, so the original six-foot wave would build to nine feet inside the harbor.”

The researchers said waves of that size could smash small boats at their moorings, possibly flood low-lying areas in the ports and push huge oil tankers and cargo ships against piers, which may not withstand the force. The destruction could create oil spills and become a serious fire hazard.

In a related article published in the July 10 issue of Geophysical Research Letters, the researchers compared the worst-case scenario for tsunamis generated on three offshore faults and one submarine landslide.

In addition to the largest of the Catalina fault scenarios, they looked at potential earthquakes on the Lasuen Knoll and San Mateo Thrust faults, which lie offshore of Orange and northern San Diego counties, as well as a large submarine landslide offshore of the Palos Verdes Peninsula. “The results are similar, but show that the ports of Los Angeles and Long Beach are particularly vulnerable to locally generated tsunamis,” Borrero said.

However, the analysis offered some good news: the same features that focus and amplify tsunami waves also slow the waves’ arrival. “Our models show that depending on the source, there is anywhere from 15 to 20 minutes between the earthquake and the first significant waves in the ports,” Borrero said. “This may give shippers enough time to evacuate dock workers and stop hazardous activities, such as cargo handling or offloading oil from tanker ships. Every second would count.”

Diane Ainsworth | EurekAlert!
Further information:
http://www.usc.edu

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>