Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strong quake could trigger a tsunami in Southern California

24.09.2004


With a strong enough jolt — a 7.6 -magnitude earthquake — the seafloor under Catalina Island could be violently thrust upward, causing a tsunami along the Southern California coast, according to researchers at the University of Southern California.


Map of offshore Southern California, showing areas (red) where restraining bends have created uplift on the sea floor. During an earthquake, these bends can push the seafloor up and generate a tsunami.



In a pair of journal articles published this month, researchers at the Viterbi School of Engineering described the tsunami hazard associated with offshore faults, including one that lies under Santa Catalina Island, just 25 miles off the Los Angeles coast.

“Catalina Island itself exists due to earthquake-related uplift on a geologic structure known as a restraining bend,” said Mark Legg, a geophysicist working with the USC researchers, in the August issue of Earthquake Spectra. “Although most faults offshore Los Angeles and Orange counties are mostly strike-slip — faults that move side to side — bends in the fault line produce areas where the ground is pushed up during major earthquakes. One of these regions lies directly below Santa Catalina Island.”


Strike slip faults are not straight," added Jose C. Borrero, assistant research professor in the USC Viterbi School, who worked with co-researcher Costas E. Synloakis, USC professor of civil and environmental engineering, on the study. "Bends in the fault trace produce regions where earthquake stresses cause the sea floor to pop up and generate a tsunami.

When a large earthquake occurs at a restraining bend, like the bend under Catalina Island, the ground is pushed up and, in turn, pushes up the entire region that has created the island and its offshore flanks. “Future earthquakes will push the region up further, possibly resulting in a tsunami,” Legg warned. “Tsunami” is a Japanese word for waves caused by large motions of the sea floor, either through earthquakes, landslides or undersea volcanoes. They are generally associated with earthquakes that occur offshore and produce significant uplifting of the sea floor.

Legg, who was awarded a fellowship through the National Earthquake Hazards Reduction Program to conduct research at the USC Viterbi School of Engineering, combined his earthquake modeling with computer simulation techniques developed at the university. “We took a range of potential earthquakes and investigated the tsunami potential from each case,” Borrero explained. “We found there is significant amplification of tsunami energy into San Pedro Bay.”

The findings have important implications because San Pedro Bay’s south-facing shores are home to the largest container ports in the United States — the ports of Los Angeles and Long Beach. Billions of dollars of materials pass through these ports every day. A large earthquake and tsunami could bring commerce to a halt, seriously impacting not only California’s economy but the nation’s economy.

“A magnitude 7.6 earthquake could cause seafloor uplift of six feet or more,” Borrero said. “That, in turn, would disturb the sea surface by the same amount, resulting in a tsunami. The shallow San Pedro shelf offshore of Long Beach focuses the waves and amplifies them by one-and-a -half times, so the original six-foot wave would build to nine feet inside the harbor.”

The researchers said waves of that size could smash small boats at their moorings, possibly flood low-lying areas in the ports and push huge oil tankers and cargo ships against piers, which may not withstand the force. The destruction could create oil spills and become a serious fire hazard.

In a related article published in the July 10 issue of Geophysical Research Letters, the researchers compared the worst-case scenario for tsunamis generated on three offshore faults and one submarine landslide.

In addition to the largest of the Catalina fault scenarios, they looked at potential earthquakes on the Lasuen Knoll and San Mateo Thrust faults, which lie offshore of Orange and northern San Diego counties, as well as a large submarine landslide offshore of the Palos Verdes Peninsula. “The results are similar, but show that the ports of Los Angeles and Long Beach are particularly vulnerable to locally generated tsunamis,” Borrero said.

However, the analysis offered some good news: the same features that focus and amplify tsunami waves also slow the waves’ arrival. “Our models show that depending on the source, there is anywhere from 15 to 20 minutes between the earthquake and the first significant waves in the ports,” Borrero said. “This may give shippers enough time to evacuate dock workers and stop hazardous activities, such as cargo handling or offloading oil from tanker ships. Every second would count.”

Diane Ainsworth | EurekAlert!
Further information:
http://www.usc.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>