Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Make More Accurate Observation of Earth System Possible

22.09.2004


Researchers at the Faculty of Aerospace Engineering of TU Delft have succeeded in modelling the rotational behaviour of two satellites with unprecedented accuracy. This makes it possible to model the orbit of the satellites much more accurately and this means that changes on earth observed by the satellite are also more accurate, for example, melting of the polar icecaps or the transport of water and atmospheric mass around the globe.



Satellites often have a rotational movement after being launched. This rotation and the mechanical characteristics of the satellites influence their orbits. This phenomenon was previously described using a number of (incidental) measurements and a rough model. The model created by the Delft PhD Student Nacho Andrés and his supervisor Ron Noomen, together with colleagues from the United States, Italy and Japan, removes much uncertainty about the behaviour of satellites.

The rotational movement of satellites varies in time, from rapid movement, to almost none at all. Both situations have very different consequences for the temperature distribution on the satellite’s surface, and therefore on the size and direction of the so-called thermal forces that result from non-uniform heat radiation. These thermal forces are incredibly small, a factor 1013 smaller than the gravity that governs our everyday lives. Still, being able to calculate these small forces is important in the calculation of a satellite’s orbit.


The model that the researchers of the department of Earth Observation and Space Systems together with their international colleagues have developed, represents the orbital behaviour of the LAGEOS-1 and LAGEOS-2 satellites (launched in 1976 and 1992 respectively) with extreme accuracy (up to 1 cm). The model, called LOSSAM (LAGEOS Spin Axis Model), is based on independent observations of the rotation of satellites. It computes a whole range of forces that act on the satellites. LOSSAM provides an accuracy improvement of up to 50% over previous models. The new model is especially relevant for the rotational behaviour of LAGEOS-1 since 1998, because here, other models fail to produce results.

The research results have been published in a recent edition of the scientific Journal of Geophysical Research. In a follow-up project, the thermal and conductive characteristics of the satellites will be included, allowing a comprehensive thermal model to be constructed. This will, of course, further increase the accuracy of the model and therefore the satellites’ readings.

Maarten van der Sanden | alfa
Further information:
http://www.tudelft.nl

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>