Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover ‘Hole’ in Global Warming Predictions

22.09.2004


Climate change in daily maximum temperature (K) in summer (June-July-August) simulated by RegCM2. The change is the difference between the future scenario decade (2040s) and current decade (1990s). Warming-hole averages in our analyses use the region delineated by the inner frame (35–40_N, 99–92_W). SLU/ISU graphic


In the future, global warming might not be as severe in the central United States as in other parts of the country, according to scientists at Saint Louis University and Iowa State University (ISU).

Using a detailed regional climate model, these researchers estimate summertime daily maximum temperatures will not climb as high in a Midwestern region -- centered on the Missouri/Kansas border -- as anywhere else in the United States. The hole stretches for hundreds of miles and includes Missouri, Iowa, Nebraska and Oklahoma.

The findings are published in the current issue of Geophysical Research Letters. The article’s lead author is Zaitao Pan, Ph.D., an assistant professor of earth and atmospheric sciences at Saint Louis University. The researchers say the findings underscore the need to consider the impact of global warming on a region-by-region basis.



“The modeling showed that warming in the United States will be stronger in winter than summer and stronger at night than during the day,” Pan said. “But we found what looked to us like a ‘hole’ in the daytime warming in summer, which was a surprise.”

Pan collaborated with scientists at the Regional Climate Modeling Laboratory at ISU, where he earned his Ph.D. and conducted part of this research. After discovering the ‘hole’ in climate projections for the 2040s, Pan went back to carefully examine the observed maximum daily temperatures from 1975-2000 in a region that centers in eastern Kansas and touches parts of Missouri, Oklahoma, Nebraska and Iowa. “We found that, in fact, this hole already has started to develop,” he said.

Ray Arritt, agronomy professor at ISU, said the existence of this “hole” in the warming makes sense. “Our model tells us the future climate will have more rainfall and wetter soil, so more of the sun’s energy goes into evaporating water than heating the air,” he said. “Rainfall in the northern Great Plains already has increased by about 10 percent over the past few decades, which is consistent with our predictions.”

Team members caution that independent evaluations are needed to confirm this finding and to determine whether the ‘hole’ might be a temporary phenomenon that will disappear as global warming becomes more severe in the latter half of the 21st century. In addition to Pan and Arritt, co-authors are Gene Takle, Bill Gutowski, Chris Anderson and Moti Segal of ISU.

Clayton Berry | EurekAlert!
Further information:
http://www.slu.edu

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>