Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover ‘Hole’ in Global Warming Predictions

22.09.2004


Climate change in daily maximum temperature (K) in summer (June-July-August) simulated by RegCM2. The change is the difference between the future scenario decade (2040s) and current decade (1990s). Warming-hole averages in our analyses use the region delineated by the inner frame (35–40_N, 99–92_W). SLU/ISU graphic


In the future, global warming might not be as severe in the central United States as in other parts of the country, according to scientists at Saint Louis University and Iowa State University (ISU).

Using a detailed regional climate model, these researchers estimate summertime daily maximum temperatures will not climb as high in a Midwestern region -- centered on the Missouri/Kansas border -- as anywhere else in the United States. The hole stretches for hundreds of miles and includes Missouri, Iowa, Nebraska and Oklahoma.

The findings are published in the current issue of Geophysical Research Letters. The article’s lead author is Zaitao Pan, Ph.D., an assistant professor of earth and atmospheric sciences at Saint Louis University. The researchers say the findings underscore the need to consider the impact of global warming on a region-by-region basis.



“The modeling showed that warming in the United States will be stronger in winter than summer and stronger at night than during the day,” Pan said. “But we found what looked to us like a ‘hole’ in the daytime warming in summer, which was a surprise.”

Pan collaborated with scientists at the Regional Climate Modeling Laboratory at ISU, where he earned his Ph.D. and conducted part of this research. After discovering the ‘hole’ in climate projections for the 2040s, Pan went back to carefully examine the observed maximum daily temperatures from 1975-2000 in a region that centers in eastern Kansas and touches parts of Missouri, Oklahoma, Nebraska and Iowa. “We found that, in fact, this hole already has started to develop,” he said.

Ray Arritt, agronomy professor at ISU, said the existence of this “hole” in the warming makes sense. “Our model tells us the future climate will have more rainfall and wetter soil, so more of the sun’s energy goes into evaporating water than heating the air,” he said. “Rainfall in the northern Great Plains already has increased by about 10 percent over the past few decades, which is consistent with our predictions.”

Team members caution that independent evaluations are needed to confirm this finding and to determine whether the ‘hole’ might be a temporary phenomenon that will disappear as global warming becomes more severe in the latter half of the 21st century. In addition to Pan and Arritt, co-authors are Gene Takle, Bill Gutowski, Chris Anderson and Moti Segal of ISU.

Clayton Berry | EurekAlert!
Further information:
http://www.slu.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>