Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ignition Threshold for Impact-Generated Fires

08.09.2004


Scientists conclude that, 65 million years ago, a 10-kilometer-wide asteroid or comet slammed into what is now the Yucatán peninsula, excavating the Chicxulub impact crater and setting into motion a chain of catastrophic events thought to precipitate the extinction of the dinosaurs and 75 percent of animal and plant life that existed in the late Cretaceous period.



"The impact of an asteroid or comet several kilometers across heaps environmental insult after insult on the world," said Dr. Daniel Durda, a senior research scientist at Southwest Research Institute® (SwRI®). "One aspect of the devastation wrought by large impacts is the potential for global wildfires ignited by material ejected from the crater reentering the atmosphere in the hours after the impact."

Large impacts can blast thousands of cubic kilometers of vaporized impactor and target sediments into the atmosphere and above, expanding into space and enveloping the entire planet. These high-energy, vapor-rich materials reenter the atmosphere and heat up air temperatures to the point that vegetation on the ground below can spontaneously burst into flame.


"In 2002, we investigated the Chicxulub impact event to examine the extent and distribution of fires it caused," said Durda. This cosmic collision carved out a crater some 40 kilometers (25 miles) deep and 180 kilometers (112 miles) across at the boundary between two geologic periods, the Cretaceous, when the dinosaurs ruled the planet, and the Tertiary, when mammals took supremacy.

"We noted that fires appeared to be global, covering multiple continents, but did not cover the entire Earth," Durda continued. "That suggested to us that the Chicxulub impact was probably near the threshold size event necessary for igniting global fires, and prompted us to ask ’What scale of impact is necessary for igniting widespread fires?’"

In a new study, Durda and Dr. David Kring, an associate professor at the University of Arizona Lunar and Planetary Laboratory, published a theory for the ignition threshold for impact-generated fires in the August 20, 2004, issue of the Journal of Geophysical Research. Their research indicates that impacts resulting in craters at least 85 kilometers wide can produce continental-scale fires, while impact craters more than 135 kilometers wide are needed to cause global-scale fires.

To calculate the threshold size impact required for global ignition of various types of vegetation, Durda and Kring used two separate, but linked, numerical codes to calculate the global distribution of debris reentering the atmosphere and the kinetic energy deposited in the atmosphere by the material. The distribution of fires depends on projectile trajectories, the position of the impact relative to the geographic distribution of forested continents and the mass of crater and projectile debris ejected into the atmosphere.

They also examined the threshold temperatures and durations required to spontaneously ignite green wood, to ignite wood in the presence of an ignition source (such as lightning, which would be prevalent in the dust-laden energetic skies following an impact event) and to ignite rotting wood, leaves and other common forest litter.

"The Chicxulub impact event may have been the only known impact event to have caused wildfires around the globe," Kring noted. "The Manicouagan (Canada) and Popigai (Russia) impact events, however, may have caused continental-scale fires. The Manicouagan impact occurred in the late Triassic, and the Popigai impact event occurred in the late Eocene, but neither has been firmly linked yet to the mass extinction events that occurred at those times."

| newswise
Further information:
http://www.u.arizona.edu
http://www.swri.org/press/impactfires.htm

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>