Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ignition Threshold for Impact-Generated Fires

08.09.2004


Scientists conclude that, 65 million years ago, a 10-kilometer-wide asteroid or comet slammed into what is now the Yucatán peninsula, excavating the Chicxulub impact crater and setting into motion a chain of catastrophic events thought to precipitate the extinction of the dinosaurs and 75 percent of animal and plant life that existed in the late Cretaceous period.



"The impact of an asteroid or comet several kilometers across heaps environmental insult after insult on the world," said Dr. Daniel Durda, a senior research scientist at Southwest Research Institute® (SwRI®). "One aspect of the devastation wrought by large impacts is the potential for global wildfires ignited by material ejected from the crater reentering the atmosphere in the hours after the impact."

Large impacts can blast thousands of cubic kilometers of vaporized impactor and target sediments into the atmosphere and above, expanding into space and enveloping the entire planet. These high-energy, vapor-rich materials reenter the atmosphere and heat up air temperatures to the point that vegetation on the ground below can spontaneously burst into flame.


"In 2002, we investigated the Chicxulub impact event to examine the extent and distribution of fires it caused," said Durda. This cosmic collision carved out a crater some 40 kilometers (25 miles) deep and 180 kilometers (112 miles) across at the boundary between two geologic periods, the Cretaceous, when the dinosaurs ruled the planet, and the Tertiary, when mammals took supremacy.

"We noted that fires appeared to be global, covering multiple continents, but did not cover the entire Earth," Durda continued. "That suggested to us that the Chicxulub impact was probably near the threshold size event necessary for igniting global fires, and prompted us to ask ’What scale of impact is necessary for igniting widespread fires?’"

In a new study, Durda and Dr. David Kring, an associate professor at the University of Arizona Lunar and Planetary Laboratory, published a theory for the ignition threshold for impact-generated fires in the August 20, 2004, issue of the Journal of Geophysical Research. Their research indicates that impacts resulting in craters at least 85 kilometers wide can produce continental-scale fires, while impact craters more than 135 kilometers wide are needed to cause global-scale fires.

To calculate the threshold size impact required for global ignition of various types of vegetation, Durda and Kring used two separate, but linked, numerical codes to calculate the global distribution of debris reentering the atmosphere and the kinetic energy deposited in the atmosphere by the material. The distribution of fires depends on projectile trajectories, the position of the impact relative to the geographic distribution of forested continents and the mass of crater and projectile debris ejected into the atmosphere.

They also examined the threshold temperatures and durations required to spontaneously ignite green wood, to ignite wood in the presence of an ignition source (such as lightning, which would be prevalent in the dust-laden energetic skies following an impact event) and to ignite rotting wood, leaves and other common forest litter.

"The Chicxulub impact event may have been the only known impact event to have caused wildfires around the globe," Kring noted. "The Manicouagan (Canada) and Popigai (Russia) impact events, however, may have caused continental-scale fires. The Manicouagan impact occurred in the late Triassic, and the Popigai impact event occurred in the late Eocene, but neither has been firmly linked yet to the mass extinction events that occurred at those times."

| newswise
Further information:
http://www.u.arizona.edu
http://www.swri.org/press/impactfires.htm

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>