Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First-of-its-kind experiment on San Andreas

08.09.2004


Quake researchers ’look’ deep inside fault with cold war-era gravity sensor



Using classified technology developed by the military during the Cold War, a team of geoscientists led by Rice University’s Manik Talwani is conducting a first-of-its-kind experiment on California’s famed San Andreas fault this week. The researchers will gather data that could give scientists a much clearer picture of the fault’s "gouge zone," a region 2-3 kilometers beneath the earth consisting of gravel-sized rock that is created when continental plates grind against one another.

Little data has been collected on the deep underlying structures of fault lines because it’s very expensive to drill deep wells and install instruments that far below ground. This week’s experiments take advantage of extremely sensitive gravity instruments that will be flown over the site in an airplane. By taking to the air, Talwani and his colleagues will be able to cover a 100-square kilometer region of the San Andreas near the town of Parkfield, in central California.


"If this technique works, it will open the door for geoscientists to affordably gather information about fault lines and other subsurface areas of interest," said Talwani, the Schlumberger Professor of Geophysics. "Moreover, these flights will give us a baseline measurement that we can compare with future surveys to find out how things are changing in the shallow crust beneath the surface of the fault."

The experiments take advantage of the fact that gravity varies slightly over the Earth’s surface, due to small changes in the mass of subsurface rock and sediments. Using sophisticated instruments developed for nuclear submarines during the Cold War, the research team will measure the gravity gradient, or the rate at which gravity changes from place to place along the San Andreas.

The flights are being conducted near Parkfield, because that is the site of the International Continental Drilling project, a scientific mission that’s taking core samples within the region that Talwani’s team is measuring. This physical evidence will help Talwani’s team as it analyzes its data.

Ultimately, Talwani hopes the technology will change the economics of studying fault lines by making it affordable to conduct baseline and follow-up surveys of significant portions of fault lines -- something that just isn’t cost effective with land-based instruments.

The gravity gradiometer that’s being used this week was developed at great expense by Lockheed-Martin during the Cold War. It was originally developed as a silent navigation system for nuclear submarines, and some of the underlying technology of the instrument remains classified.

Talwani’s group is contracting with the Houston-based Bell Geospace Inc. to carry out the airborne gradiometer survey. The project is supported by the National Science Foundation, the National Imagery and Mapping Agency and several industrial firms. More information about the San Andreas Project is available at: http://cohesion.rice.edu/naturalsciences/earthscience/research.cfm?doc_id=2815

Talwani, currently on leave from Rice, is serving as president of Integrated Ocean Drilling Program Management International, the central management organization of the Integrated Ocean Drilling Program (IODP). With offices in Washington, D.C. and Sapporo, Japan, IODP-MI is responsible for overseeing the science planning, engineering development, site survey data management, core sample repositories, publication, education and outreach of the world’s largest marine geoscience research program. Using technologically advanced ocean-drilling techniques and drilling platforms in the U.S., Europe, and Japan, IODP’s exploration teams collect and study subseafloor sediments and rocks worldwide. IODP is funded by The National Science Foundation and Japan’s Ministry of Education, Culture, Sports, Science and Technology.

Formerly, Talwani was a chief scientist for Gulf Research and Development and director of Columbia University’s Lamont-Doherty Geological Observatory. He joined Rice’s faculty in 1985.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu
http://cohesion.rice.edu/naturalsciences/earthscience/research.cfm?doc_id=2815

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>