Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First-of-its-kind experiment on San Andreas

08.09.2004


Quake researchers ’look’ deep inside fault with cold war-era gravity sensor



Using classified technology developed by the military during the Cold War, a team of geoscientists led by Rice University’s Manik Talwani is conducting a first-of-its-kind experiment on California’s famed San Andreas fault this week. The researchers will gather data that could give scientists a much clearer picture of the fault’s "gouge zone," a region 2-3 kilometers beneath the earth consisting of gravel-sized rock that is created when continental plates grind against one another.

Little data has been collected on the deep underlying structures of fault lines because it’s very expensive to drill deep wells and install instruments that far below ground. This week’s experiments take advantage of extremely sensitive gravity instruments that will be flown over the site in an airplane. By taking to the air, Talwani and his colleagues will be able to cover a 100-square kilometer region of the San Andreas near the town of Parkfield, in central California.


"If this technique works, it will open the door for geoscientists to affordably gather information about fault lines and other subsurface areas of interest," said Talwani, the Schlumberger Professor of Geophysics. "Moreover, these flights will give us a baseline measurement that we can compare with future surveys to find out how things are changing in the shallow crust beneath the surface of the fault."

The experiments take advantage of the fact that gravity varies slightly over the Earth’s surface, due to small changes in the mass of subsurface rock and sediments. Using sophisticated instruments developed for nuclear submarines during the Cold War, the research team will measure the gravity gradient, or the rate at which gravity changes from place to place along the San Andreas.

The flights are being conducted near Parkfield, because that is the site of the International Continental Drilling project, a scientific mission that’s taking core samples within the region that Talwani’s team is measuring. This physical evidence will help Talwani’s team as it analyzes its data.

Ultimately, Talwani hopes the technology will change the economics of studying fault lines by making it affordable to conduct baseline and follow-up surveys of significant portions of fault lines -- something that just isn’t cost effective with land-based instruments.

The gravity gradiometer that’s being used this week was developed at great expense by Lockheed-Martin during the Cold War. It was originally developed as a silent navigation system for nuclear submarines, and some of the underlying technology of the instrument remains classified.

Talwani’s group is contracting with the Houston-based Bell Geospace Inc. to carry out the airborne gradiometer survey. The project is supported by the National Science Foundation, the National Imagery and Mapping Agency and several industrial firms. More information about the San Andreas Project is available at: http://cohesion.rice.edu/naturalsciences/earthscience/research.cfm?doc_id=2815

Talwani, currently on leave from Rice, is serving as president of Integrated Ocean Drilling Program Management International, the central management organization of the Integrated Ocean Drilling Program (IODP). With offices in Washington, D.C. and Sapporo, Japan, IODP-MI is responsible for overseeing the science planning, engineering development, site survey data management, core sample repositories, publication, education and outreach of the world’s largest marine geoscience research program. Using technologically advanced ocean-drilling techniques and drilling platforms in the U.S., Europe, and Japan, IODP’s exploration teams collect and study subseafloor sediments and rocks worldwide. IODP is funded by The National Science Foundation and Japan’s Ministry of Education, Culture, Sports, Science and Technology.

Formerly, Talwani was a chief scientist for Gulf Research and Development and director of Columbia University’s Lamont-Doherty Geological Observatory. He joined Rice’s faculty in 1985.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu
http://cohesion.rice.edu/naturalsciences/earthscience/research.cfm?doc_id=2815

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>