Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Envisat witnesses return of the South Polar ozone hole

02.09.2004


The smudges of dark blue on this Envisat-derived ozone forecast trace the start of what has unfortunately become an annual event: the opening of the ozone hole above the South Pole.

"Ever since this phenomenon was first discovered in the mid-1980s, satellites have served as an important means of monitoring it," explained José Achache, ESA Director of Earth Observation Programmes. "ESA satellites have been routinely observing stratospheric ozone concentrations for the last decade. "And because Envisat’s observations are assimilated into atmospheric models, they actually serve as the basis of an operational ozone forecasting service. These models predict the ozone hole is in the process of opening this week."

Envisat data show 2004’s ozone hole is appearing about two weeks later than last year’s, but at a similar time period to the average during the last decade. The precise time and range of Antarctic ozone hole occurrences are determined by regional meteorological variations. The ozone hole typically persists until November or December, when increasing regional temperatures cause the winds surrounding the South Pole to weaken, and ozone-poor air inside the vortex is mixed with ozone-rich air outside it.



The ozone hole of 2002 was an exception to this general pattern, when a late September slowdown of the polar vortex caused the ozone hole to split in two and dissipate early. Envisat’s predecessor mission, ERS-2, monitored the process. "Envisat carries an instrument called the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY), based on a previous instrument flown aboard ERS-2, called the Global Ozone Monitoring Experiment (GOME)," said Henk Eskes of the Royal Netherlands Meteorological Institute (KNMI). "The two instruments give us a combined data set that stretches over ten years, one that Envisat adds to every day with fresh observations. "This data set presents a very good means of eventually identifying long-term trends in ozone. Whether or not the ozone layer is starting to recover is a hotly debated topic at the moment."

The stratospheric ozone layer protects life on Earth from harmful ultraviolet (UV) radiation. The ozone thinning represented here is ultimately caused by the presence of man-made pollutants in the atmosphere such as chlorine, originating from man-made pollutants like chlorofluorocarbons (CFCs).

Now banned under the Montreal Protocol, CFCs were once widely used in aerosol cans and refrigerators. CFCs themselves are inert, but ultraviolet radiation high in the atmosphere breaks them down into their constituent parts, which can be highly reactive with ozone. Just because they were banned does not mean these long-lived chemicals have vanished from the air, so scientists expect the annual South Polar ozone hole to continue to appear for many years to come.

During the southern hemisphere winter, the atmospheric mass above the Antarctic continent is kept cut off from exchanges with mid-latitude air by prevailing winds known as the polar vortex. This leads to very low temperatures, and in the cold and continuous darkness of this season, polar stratospheric clouds are formed that contain chlorine.

As the polar spring arrives, the combination of returning sunlight and the presence of polar stratospheric clouds leads to splitting of chlorine into highly ozone-reactive radicals that break ozone down into individual oxygen molecules. A single molecule of chlorine has the potential to break down thousands of molecules of ozone.

ESA’s ten-instrument Envisat spacecraft carries three instruments to measure the atmosphere; the results here come from SCIAMACHY, which provides global coverage of the distribution of ozone and other trace gases, as well as aerosols and clouds.

KNMI processes SCIAMACHY data in near-real time as the basis of an operational ozone forecasting service. This is part of a suite of atmospheric information services provided by a project called TEMIS (Tropospheric Emission Monitoring Internet Service) that also includes UV radiation monitoring and forecasting.

TEMIS is backed by ESA as part of the Agency’s Data User Programme, intended to establish viable Earth Observation-based services for communities of users.

The TEMIS atmospheric ozone forecast seen here has atmospheric ozone measured in Dobson Units (DUs), which stands for the total thickness of ozone in a given vertical column if it were concentrated into a single slab at standard temperature and atmospheric pressure – 400 DUs is equivalent to a thickness of four millimetres, for example.

Envisat results to be revealed

Launched in March 2002, ESA’s Envisat satellite is an extremely powerful means of monitoring the state of our world and the impact of human activities upon it. Envisat carries ten sophisticated optical and radar instruments to observe and monitor the Earth’s atmosphere, land, oceans and ice caps, maintaining continuity with the Agency’s ERS missions started in 1991.

After two and a half years in orbit, more than 700 scientists from 50 countries are about to meet at a special symposium in Salzburg in Austria to review and discuss early results from the satellites, and present their own research activities based on Envisat data.

Starting next Monday, the Envisat Symposium will address almost all fields of Earth science, including atmospheric chemistry, coastal studies, radar and interferometry, winds and waves, vegetation and agriculture, landslides, natural risks, air pollution, ocean colour, oil spills and ice.

There are over 650 being presented at the Symposium, selected by peer review. Presentations will include results on the Prestige oil spill, last year’s forest fires in Portugal, the Elbe flooding in 2002, the evolution of the Antarctic ozone hole, the Bam earthquake and pollution in Europe.

Numerous demonstrations are planned during the week in the ESA Exhibit area. An industrial consortium exhibit on the joint ESA-European Commission Global Monitoring for Environment and Security (GMES) initiative is also planned.

Mariangela D’Acunto | alfa
Further information:
http://www.esa.int
http://www.esa.int/export/esaEO/SEM3B90XDYD_index_0.html

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>