Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Team to Collect Ice Samples in South Pole Expedition

23.08.2004


There’s nothing quite like going into the deep freeze to learn more about planet Earth.



That’s where Jihong Cole-Dai, assistant professor of chemistry and biochemistry at South Dakota State University, and graduate students Drew Budner and Dave Ferris will find themselves when they head to Antarctica in December.

In a collaborative research project with the University of California-San Diego and funded by the National Science Foundation, they will collect ice cores from the South Pole to examine the ice chemical composition that contains clues about the oxygen in Earth’s atmosphere. Cole-Dai’s research has centered on how volcanic eruptions during the last 1,000 years have affected the atmosphere. This new project expands on past research results. “We will again be looking at what happens to the atmosphere when volcanoes go off, but this time we want to find what happens to the oxygen chemistry,” said Cole-Dai.


“Chemistry involving oxygen is the basis of life on Earth today,” he added. “In the very beginning, there was no oxygen in the atmosphere. We know that by looking at rocks that were formed billions of years ago. With this research project, we might be able to say something about how oxygen got into the atmosphere.” Chemicals from the atmosphere end up buried in polar snow and can be retrieved with ice cores, which “can give you very detailed information about the atmosphere,” explained Cole-Dai. “Volcanoes put gases into the atmosphere and they circle the globe for a long time. The gases, through reactions with oxygen, eventually turn into tiny sulfuric acid droplets. In Antarctica, the volcanic sulfuric acid becomes part of the snow that falls and accumulates year after year.”

The South Pole field team, consisting of the three SDSU researchers and two drilling engineers from the University of Wisconsin, plans to collect 400 meters, or a quarter-of-a-mile long, of four-inch ice cylinders. The 3,000 pounds of ice cores will be packaged in insulated boxes, shipped while frozen to a port in California, and trucked to the National Ice Core Laboratory in Denver, Colo., before making their way to the Ice Core and Environmental Chemistry Laboratory (ICECL) at SDSU for chemical analysis.

After complete physical and dental checkups in Brookings, Cole-Dai, Budner and Ferris will depart in December for a National Science Foundation facility in New Zealand in the South Pacific. There, they will be outfitted with extreme cold apparel that includes parkas, windbreakers, thermal underwear, socks, gloves, double insulated boots, goggles and ski masks. Each person will carry personal gear of more than 30 pounds while in Antarctica.

From New Zealand, they will board a military cargo plane for an eight-hour flight to McMurdo Station, a base on the southern edge of Antarctica that serves as the starting point for their expedition.

At McMurdo, the group will receive extensive training on how to live and work in a snow and ice environment. The training includes a survival course, which covers camping on ice, learning to build an igloo for emergency shelter, rescuing from falls into cracks in ice and instructions on radio communication skills.

From McMurdo, the team will fly on a skied cargo plane 900 miles to the Amundsen-Scott South Pole Station, where they will set up camp a few miles from the station and spend two weeks drilling and packaging ice cores.

December and January will be Antarctica’s summer, but temperatures at the South Pole will still reach 30 degrees below zero Fahrenheit. Toss in 20- to 30-mile-per-hour winds, and conditions will indeed be harsh at the camp. “Every inch of the body has to be covered, just a little exposure can mean frost bite and dehydration very fast,” said Cole-Dai. “You have to carry water bottles all the time and they have to be close to the body or the water will freeze.”

Also in the mix is working and living at 10,000 feet above sea level, which is the thickness of the polar ice sheet. “We plan to work as fast and quick as we can so we don’t stay out too long,” noted Cole-Dai. “The wind, cold temperature and high altitude can really take its toll and you feel it. People who climb know what I’m talking about.”

This will be Cole-Dai’s third trip to Antarctica so he knows what to expect. But for Budner of Alamosa, Colo., and Ferris of Brookings, going to the South Pole was not what they had in mind when they came to SDSU to pursue doctoral degrees in chemistry. Still, when Cole-Dai approached them about going with him, there wasn’t much hesitation. “It’s a great opportunity for me to spend time in a place not many people get to go to,” said Budner. “Even the experience of camping on the ice is a unique situation that not many people have.”

“This is a once-in-a-lifetime thing,” said Ferris. “I’m looking forward to it. The closer it gets, the more I get into it. I’ve done a lot of reading on the history behind Antarctica and the South Pole. That makes it more interesting, too, knowing what others have gone through in the last 100 years and how it’s changed just trying to get there.”

The students are conducting research related to ice cores. Ferris will try to measure the amount of man-made pollutants in South Pole snow. Budner will test new analytical techniques to measure inorganic chemicals in ice cores.

They are already preparing for the long journey, learning everything about the South Pole, and working out to be physically fit for the harsh climate and hard work ahead. “The one thing that worries me is that it’s going to be sunlight the whole time,” confessed Budner. “Trying to sleep in bright light concerns me a little. The cold weather shouldn’t be too bad, though. We should be well prepared for that.”

“It’s going to be challenging and even a little scary, too,” admitted Ferris. “It’s flat and very cold, with two miles of snow beneath you. Wearing five layers of clothing will be an interesting experience in itself.”

| newswise
Further information:
http://www.sdstate.edu

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>