Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alpine fault in New Zealand not your average fault

19.08.2004


Ents, orcs and hobbits may have trod upon New Zealand soils, but beneath the Southern Island lies a giant earthquake fault that may help seismologists understand how the Earth moves and bends, according to a Penn State seismologist.



"One of the issues that makes the Alpine fault interesting is that while it is a strike slip fault for most of its length, it begins in a transition from a subduction zone to a strike slip fault," says Dr. Kevin Furlong, professor of geosciences. "Most of the major faults in the world that are strike slip faults – San Andreas, Anatolian in Turkey -- initiate quite differently, but this is different because the subduction is ripping off part of the Australian plate before it joins the Alpine fault."

Subduction occurs when one of the Earth’s tectonic plates slides beneath another plate. The subduction area or zone is usually the location for earthquakes and volcanic activity. Mt. St. Helens formed in a subduction zone. The Alpine fault does not have volcanic activity. Strike slip faults occur when two tectonic plates slide past each other.


The origin of the Alpine fault is located in the transition area between Fiordland and the Southern Alps on the South Island of New Zealand near Milford Sound. Here, the Australian plate meets the Pacific plate. While most other strike slip faults begin as an area of many small faults and eventually coalesce into one fault that dominates, the Alpine fault begins as a single fault.

"The fault is moving at about an inch and a quarter (30 mm) a year, tectonic plate speed, right from the beginning, which is very fast for a new fault," Furlong told attendees at the 2004 Western Pacific Geophysics Meeting today (Aug. 18) in Honolulu. "We would like to get at the physics of what is happening on that fault."

At the origin of the Alpine fault, the Pacific plate and the Australian plate have a small jog or notch forming a tiny subduction zone of about 60 miles (100 km) by 120 miles (200 km). On Aug. 20, 2003, an earthquake of magnitude 7.2 occurred in this area.

"We are interpreting this earthquake as a reflection of the tearing of the plate when it transitions from subducting to a strike slip zone," says Furlong. "To match the observations, we need a tear in the plate."

There have been no major earthquakes on the main portion of the Alpine fault in the last 100 years. Paleoseismologists believe that there was an earthquake in the 1700s, but their calculations are still uncertain.

"We know that there is at present significant seismicity at the southern end of the fault and at the northern end where the fault changes directions, but the central portion is relatively aseismic," says Furlong. "We do not know if this is normal or not."

While earthquake monitoring on the Alpine fault is not as dense as on the San Andreas, records show that earthquakes of magnitude 3 occur quite frequently, but not in the central portion of the fault.

"When we take into account the detection level of the monitoring, there in fact appear to be more earthquakes in New Zealand than on the San Andreas in California,""says Furlong.

One indication that things have not always been quite so calm on the Alpine fault is the presence of a rock type called psuedotachylite, which is thought to form either during an earthquake or with a meteor impact. In New Zealand they are formed along the Alpine fault by earthquakes. The rock contains bands of melted rock that seeps into fractures. The melted rock forms by the frictional heating during an earthquake. To form psuedotachylite, the right conditions of temperature and pressure must occur, and along faults, this implies that there must be very high stresses during the earthquake.

"The Alpine fault generates large amounts of psuedotachylite," says Furlong. "Why should the fault have such a high stress level? Something about the mechanical behavior is still puzzling. Perhaps the fresh edge of the plate that joins the fault is rough and that is the reason for the melting during earthquakes."

Because the Alpine fault begins so cleanly, Furlong believes it can tell us something about strike slip faults in general. While the Alpine fault does not impact large populated areas, the other major strike slip faults do, including the San Andreas in California, the Anatolian in Turkey and faults in China and Central Asia.

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>