Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenland ice core project yields probable ancient plant remains

16.08.2004


The sediment sampler was hammered into the ground under the ice in order to recover sediment samples. It is here filled with a mixture of mud and ice.


People are pulling and pushing to guide the 3 ton winch up through the narrow passage to the surface from 8 meters depth. In the other end, the camp bulldozer is pulling hard.


A team of international researchers working on the North Greenland Ice Core Project recently recovered what appear to be plant remnants nearly two miles below the surface between the bottom of the glacial ice and the bedrock.

Researchers from the project, known as NGRIP, said particles found in clumps of reddish material recovered from the frozen, muddy ice in late July look like pine needles, bark or blades of grass. Thought to date to several million years ago before the last ice age during the Pleistocene epoch smothered Greenland, the material will be analyzed in several laboratories, said researchers.

The suspected plant material under about 10,400 feet of ice indicates the Greenland Ice Sheet "formed very fast," said NGRIP project leader Dorthe Dahl-Jensen, a professor at the University of Copenhagen’s Niels Bohr Institute. "There is a big possibility that this material is several million years old -- from a time when trees covered Greenland," she said.



"Several of the pieces look very much like blades of grass or pine needles," said University of Colorado at Boulder geological sciences Professor James White, a NGRIP principal investigator. "If confirmed, this will be the first organic material ever recovered from a deep ice-core drilling project," said White, also a fellow of CU-Boulder’s Institute of Arctic and Alpine Research.

The ice cores in which the reddish material was found also contain a high content of trapped gas, which is expected to help researchers determine what the area’s climate history was like on an annual basis during the past 123,000 years. Each yearly record of ice can reveal past temperatures and precipitation levels, the content of ancient atmospheres and even evidence for the timing, direction and magnitude of distant storms, fires and volcanic eruptions, said White.

NGRIP is an international project with participants from Denmark, Germany, Japan, the United States, Switzerland, France, Sweden, Belgium and Iceland. NGRIP is funded by the participating countries, including the U.S. National Science Foundation. The cores from NGRIP are cylinders of ice four inches in diameter that were brought to the surface in 11.5-foot lengths. Developed by the NGRIP research team, the specialized deep ice drill has been used to bore several deep ice cores.

The NGRIP drilling site is located roughly in the middle of Greenland at an elevation of about 9,850 feet. The temperature in the subsurface trenches where ice-core scientists worked is minus 22 degrees Fahrenheit. CU-Boulder doctoral student Trevor Popp of INSTAAR was the lead driller on the 2004 NGRIP effort. Another CU-Boulder graduate student, Annalisa Schilla, also participated in the 2004 NGRIP field season.

James White | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>