Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Urban Heat Islands Make Cities Greener

30.07.2004


Some people think cities and nature don’t mix, but a new NASA-funded study finds that concrete jungles create warmer conditions that cause plants to stay green longer each year, compared to surrounding rural areas.

Urban areas with high concentrations of buildings, roads and other artificial surfaces retain heat, creating urban heat islands. Satellite data reveal that urban heat islands increase surface temperatures compared to rural surroundings.

Using information from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on the Terra satellite, Boston University, Boston, researchers discovered that city climates have a noticeable influence on plant growing seasons up to 10 kilometers (6 miles) away from a city’s edges. Growing seasons in 70 cities in eastern North America were about 15 days longer in urban areas compared to rural areas outside of a city’s influence.



"If you live in a rural area and drive regularly into the city, and if you pay attention to vegetation, you will see a difference in the growing seasons in early spring and late autumn," said Xiaoyang Zhang, the study’s lead author and a researcher at Boston University. The study appeared in a recent issue of the American Geophysical Union’s Geophysical Research Letters journal.

Zhang added that urban heat islands provide a very good model to assess the effects of global warming on plant growing seasons and ecosystems. As temperatures warm due to climate change, growing seasons will likely change as well. Zhang and colleagues found that for every 1 degree Celsius (C) or 1.8 Fahrenheit (F) that temperatures rose on average during the early springtime, vegetation bloomed 3 days earlier.

Springtime land surface temperatures in eastern North American cities were on average 2.3°C (4.1°F) warmer than surrounding rural areas, according to the study. In late autumn to winter, the city temperatures were 1.5°C (2.7°F) higher than the surrounding areas. These higher urban temperatures caused plants to start greening-up on average seven days earlier in spring. Similarly, in urban heat island areas, the growing season lasted eight days longer in the fall than the rural areas.

The researchers used MODIS surface reflectance data to measure seasonal changes in plant growth for the entire year of 2001. By accounting for angles of views from the satellite, varying sunlight, land surface temperatures, cloud cover, and the presence of snow, the scientists were able to detect daily variations in the green color of plants.

The researchers classified urban areas using MODIS data from October 2000 to October 2001, as well as Defense Meteorological Satellite Program’s (DMSP) nighttime lights imagery and population density data. Only eastern North American cities with urban areas larger than 10 square kilometers (4 square miles) were included in the study.

The researchers found that the effect urban heat islands have on plants’ growing seasons is exponentially weaker the further away from the city one travels. Significant effects were seen up to 10 kilometers (6 miles) from city lines. In other words, the impact of urban climates on ecosystems extended out 2.4 times the size of a city itself.

"Warming from global climate change will definitely impact ecosystems," Zhang said. "Thus, urban areas provide us with some measures of how changes in temperature might affect vegetation," he added.

NASA is dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather, and natural hazards using the unique vantage point of space.

Krishna Ramanujan | NASAs Earth Science News Team
Further information:
http://www.gsfc.nasa.gov

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>