Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists Discover Water Cuts Through Rock at Surprising Speed

26.07.2004


In the first study to directly measure when and how quickly rivers outside of growing mountain ranges cut through rock, geologists at the University of Vermont have determined that it was about 35,000 years ago that the Susquehanna and Potomac rivers, respectively, began carving out the Great Falls of the Potomac and Holtwood Gorge. Great Falls, located about 15 miles outside of Washington, D.C., hosts hundreds of thousands of visitors each year; Holtwood Gorge lies along the Susquehanna River, near Harrisburg, Penn.



As reported in the July 23 issue of the journal Science, the geologists analyzed rock samples collected from the gorges for 10-beryllium, a very rare isotope that is produced when cosmic rays collide with rocks and sediments at the earth’s surface. These analyses helped them gauge when the rivers abandoned their ancient beds and, consequently, exposed bare rock surfaces, known as terraces, where people climb and hike today. Knowing the age of each river terrace and its height above its current river bed, they were able to calculate how quickly the rivers cut through bedrock. Their conclusions: Incision of the 10- to 20-meter-deep gorges happened at a rate far more rapid than previously thought, and was prompted more by regional climate changes tied to the last ice age than by water pouring from melting glacial ice.

“The period of incision we measured correlates with a period of cold and stormy climate during the last glacial period that is also recorded in ice cores drilled into the Greenland ice sheet,” said Luke Reusser, a graduate student of geology at the University of Vermont and lead author of “Rapid Late Pleistocene Incision of Atlantic Passive-Margin River Gorges.”


“Because bedrock is hard and resistant to erosion, most incision within rivers running over rock occurs during extremely large flood events,” Reusser explained. “Changing climate, capable of increasing the number and severity of floods, appears to have sped up the rate of incision along both rivers about 35,000 years ago.”

The project is unique because it used many samples closely spaced to understand the spatial patterning of how and when the rivers cut into rock, according to Paul Bierman, professor of geology at the University of Vermont and co-author of the Science paper. “Without such detail, we never would have been able to detect the link with climate, nor would we know that Great Falls, probably the most visited stretch of the Potomac, has existed there for nearly 30,000 years,” Bierman said. His group continues to take samples from the area and is completing a second paper on the Susquehanna sites.

"Scientifically, these are the first data that tell us how quickly rivers of the eastern seaboard cut into rock,” said Enriqueta Barrera, director of the Geology and Paleontology Program, Division of Earth Sciences at the National Science Foundation. The NSF and U.S. Geological Survey have underwritten the project for five years. “The Potomac and Susquehanna have shown they can cut nearly a meter of solid rock every thousand years, she said. “Pretty impressive for old rivers."

“There are undated gorges all over the world,” Bierman said. “We want to work next on other East Coast rivers and streams to see how similar their histories are to the two major rivers sampled so far, the Susquehanna and Potomac.”

| newswise
Further information:
http://www.uvm.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>