Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Geologists Discover Water Cuts Through Rock at Surprising Speed


In the first study to directly measure when and how quickly rivers outside of growing mountain ranges cut through rock, geologists at the University of Vermont have determined that it was about 35,000 years ago that the Susquehanna and Potomac rivers, respectively, began carving out the Great Falls of the Potomac and Holtwood Gorge. Great Falls, located about 15 miles outside of Washington, D.C., hosts hundreds of thousands of visitors each year; Holtwood Gorge lies along the Susquehanna River, near Harrisburg, Penn.

As reported in the July 23 issue of the journal Science, the geologists analyzed rock samples collected from the gorges for 10-beryllium, a very rare isotope that is produced when cosmic rays collide with rocks and sediments at the earth’s surface. These analyses helped them gauge when the rivers abandoned their ancient beds and, consequently, exposed bare rock surfaces, known as terraces, where people climb and hike today. Knowing the age of each river terrace and its height above its current river bed, they were able to calculate how quickly the rivers cut through bedrock. Their conclusions: Incision of the 10- to 20-meter-deep gorges happened at a rate far more rapid than previously thought, and was prompted more by regional climate changes tied to the last ice age than by water pouring from melting glacial ice.

“The period of incision we measured correlates with a period of cold and stormy climate during the last glacial period that is also recorded in ice cores drilled into the Greenland ice sheet,” said Luke Reusser, a graduate student of geology at the University of Vermont and lead author of “Rapid Late Pleistocene Incision of Atlantic Passive-Margin River Gorges.”

“Because bedrock is hard and resistant to erosion, most incision within rivers running over rock occurs during extremely large flood events,” Reusser explained. “Changing climate, capable of increasing the number and severity of floods, appears to have sped up the rate of incision along both rivers about 35,000 years ago.”

The project is unique because it used many samples closely spaced to understand the spatial patterning of how and when the rivers cut into rock, according to Paul Bierman, professor of geology at the University of Vermont and co-author of the Science paper. “Without such detail, we never would have been able to detect the link with climate, nor would we know that Great Falls, probably the most visited stretch of the Potomac, has existed there for nearly 30,000 years,” Bierman said. His group continues to take samples from the area and is completing a second paper on the Susquehanna sites.

"Scientifically, these are the first data that tell us how quickly rivers of the eastern seaboard cut into rock,” said Enriqueta Barrera, director of the Geology and Paleontology Program, Division of Earth Sciences at the National Science Foundation. The NSF and U.S. Geological Survey have underwritten the project for five years. “The Potomac and Susquehanna have shown they can cut nearly a meter of solid rock every thousand years, she said. “Pretty impressive for old rivers."

“There are undated gorges all over the world,” Bierman said. “We want to work next on other East Coast rivers and streams to see how similar their histories are to the two major rivers sampled so far, the Susquehanna and Potomac.”

| newswise
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>