Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A promise of half a million years: EU research provides new insight into climate change


Within the €3.6 million EU research project PROMESS1 (PROfiles across MEditerranean Sedimentary Systems), with an EU contribution of €2.7 million, European scientists have collected 500 000 year-old sediment cores from the bottom of the Mediterranean Sea. These samples will allow researchers to reconstruct climate variations since pre-historic times, thus providing keys for understanding what is happening to Earth’s climate now. Ocean drilling is crucial in understanding changes in climate, as the sediments hold archives of past developments. PROMESS1 involves partners from France, Germany, Italy, Spain, the Netherlands and the United Kingdom.

“The findings of the PROMESS1 project place European research on a par with the world leaders in marine geosciences, the US and Japan,” said European Research Commissioner Philippe Busquin. “This research helps us to understand the Earth’s situation and envisage scenarios to be taken into account by policy-makers. Changes in sea-bottom sediments off the shore of densely populated coastlines may have a deep impact on those areas. Moreover, better understanding of how these sediments formed will help identify and monitor gas- and oilfields.”

Journalists are invited to visit the research vessel SRV Bavenit and meet the research team tomorrow, Friday 23 July, at 10.00, in the harbour of Barcelona.

Memories of global changes

Between June, 24th and July, 22nd, 2004, a team of European scientists embarked on a drilling expedition in the Mediterranean Sea, from Brindisi (Italy) to Barcelona (Spain). The purpose of this cruise was to collect, for the first time, long (up to 300 metres) sediment sections and measurements from two deltaic margins where the memory of global changes during the last 500 000 years is particularly well preserved.

The integrated ocean drilling programme

PROMESS1 has been supported with key technical advice by the Integrated Ocean Drilling Programme (IODP). Offshore drilling is expensive and it is mainly undertaken by the offshore oil and gas industry. IODP is an exception. It aims at providing the international scientific community with drilling platforms capable of drilling in extreme conditions, in terms of water depth and penetration below the sea bed, to address issues such as global changes, earthquakes, and deep biosphere. The European Union participates to IODP with the ECORD (European Consortium for Ocean Drilling) project.

Keeping the PROMESS
PROMESS1 has three main objectives:

  • The reconstruction of sea-level and climate changes during the last 500 000 years
  • The analysis of the impact of global changes on slope stability, and examination of slope processes such as underwater avalanches
  • The understanding of the processes that form strata on continental margins, in relation with sea-level changes, instabilities and oceanic processes, and recent tectonic activities

Cross-examination of data from different sources will help better understand climate variations. The data of PROMESS1 will be compared with data provided by ice core drilling.

Fabio Fabbi | European Union
Further information:

More articles from Earth Sciences:

nachricht Jacobs University supports new mapping of Mars, Mercury and the Moon
21.03.2018 | Jacobs University Bremen gGmbH

nachricht Thawing permafrost produces more methane than expected
20.03.2018 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>