Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

East Meets West To Solve Space Storm Mystery

19.07.2004


The exploration of near-Earth space will enter a new phase on 26 July when a spacecraft called Tan Ce 2 (Explorer 2) lifts off from Taiyuan spaceport, west of Beijing, on a Chinese Long March 2C rocket. The launch is currently scheduled to take place at 08:23 BST (07:23 GMT).

Tan Ce 2 is the second spacecraft to be built for the Double Star programme, a unique collaboration between Chinese and European scientists. Its predecessor, Tan Ce 1 (Explorer 1), was successfully launched on a similar rocket from a launch site in Xichang on 29 December 2003 and is now returning a rich stream of data.

Eagerly awaited by UK scientists, who have played a major role in the Double Star missions, Tan Ce 2 will complete a six spacecraft Sino-European constellation designed to solve a 30 year-old space mystery: what happens when magnetic storms are generated above the Earth?



Mysterious Storms And Earth’s Magnetic Shield

Double Star is the first Chinese programme dedicated to space science, and the first international space mission involving China. It has been designed to operate alongside the European Space Agency’s groundbreaking Cluster mission, in which a mini-flotilla of spacecraft flies in formation around the Earth.

This joint enterprise involving East and West will revolutionise our knowledge of the Earth’s magnetosphere – the huge, tadpole-shaped region of space dominated by our planet’s magnetic field – and its struggle to protect our planet from the supersonic particles that stream towards us from the Sun.

The four Cluster spacecraft have been orbiting together since 2000, flying over Earth’s magnetic poles and revealing for the first time processes which were only hinted at by earlier missions involving single spacecraft. Together with Cluster, the two Tan Ce spacecraft will be used to study the link between the solar wind and geomagnetic activity, and to provide the most detailed, multi-dimensional view of the complex magnetosphere ever obtained.

The most exciting investigation is the search for the cause of explosive magnetospheric substorms, which has been eluding space scientists since their discovery, more than 30 years ago. These storms can cause havoc with compasses and power systems on the ground.

During August and September, the four Cluster spacecraft will be spending much of their time travelling on the nightside of the Earth, in a region known as the magnetotail. Careful orbit design has arranged that the two Double Star spacecraft will periodically join them in this region. Flying closer to the Earth, they will complete the chain of six spacecraft located at different distances from our planet.

Scientists hope that this arrangement will enable them to tie down the location of the onset of a substorm, when large amounts of energy are explosively released from the Earth’s magnetic field by a process known as magnetic reconnection. This energy accelerates charged particles in the magnetotail and drives powerful electrical currents down into the ionosphere, a region of the upper atmosphere. The most obvious manifestations of these particle streams are spectacular auroral displays and disruptions to the magnetic field.

As yet, no one knows exactly where the energy release process begins, so it is not possible to choose between several theories of the origin of these substorms. Mission scientists hope that accurate measurements by the Cluster/Double Star sextet will answer this problem, and in doing so beat a dedicated five spacecraft mission being developed by NASA (named THEMIS, due for launch in autumn 2006) to solving the mystery!

“On its own, Double Star is scientifically important because it provides new measurements in key regions of magnetosphere,” said Andrew Fazakerley (MSSL-UCL), one of the Principal Scientific Investigators (PIs) from the UK. “For example, it will provide important new information on the Earth’s ever-changing radiation belts.”

“However, the really exciting part is that the orbits of the two spacecraft are explicitly designed for co-ordinated measurements with Cluster,” he added. “So, when Cluster is in the distant magnetic tail and Double Star is in the near tail, we shall be able to see simultaneously for the first time what happens in both of these key regions when the huge amounts of energy that drive the substorms are released.”

UK Experiments

UK teams play major roles in both Double Star and Cluster, both through provision of instruments and involvement in science operations.

Seven of the eight European instruments on the pair of Double Star spacecraft (including five led by the UK) are copies of instruments on Cluster.

The Plasma Electron and Current Experiment (PEACE) on TC-1 and TC-2 was provided by the Cluster team at Mullard Space Science Laboratory, led by Andrew Fazakerley. This measures the speed, direction and population of electrons around the spacecraft.

Principal Investigator for the Fluxgate Magnetometer (FGM) experiments on TC-1 and lead Co-Investigator for the TC-2 FGM is Chris Carr from the Cluster team at Imperial College London. These instruments can measure a magnetic field in space 1,000 times weaker than the field at the Earth’s surface.

An experiment on TC-1 that measures waves (rapid variations in the magnetic field) includes the Digital Wave Processor (DWP) instrument, developed by the Cluster team at the University of Sheffield, under the leadership of Hugo Alleyne.

In addition, Double Star will draw on science operations expertise at the Rutherford Appleton Laboratory (RAL). RAL has been running the Cluster Joint Science Operations Centre (JSOC) since the beginning of 2001 and has adapted this to provide a similar service for Double Star. This European Payload Operations Service (EPOS) works with the European instrument teams on Double Star to co-ordinate the commanding of their instruments and delivers the finalised commanding to the Double Star Science Application System in Beijing.

RAL is also providing the Double Star Data Management System that will exchange key data products generated by the instrument teams between national data centres in Austria, France and the UK, and enable scientists and the general public to browse and retrieve those products.

Mike Hapgood, lead scientist for both the Cluster JSOC and Double Star EPOS, says, “This is a great opportunity to advance our understanding of the large-scale behaviour of the Earth’s magnetosphere.”

Chris Carr | alfa
Further information:
http://www.ic.ac.uk

More articles from Earth Sciences:

nachricht PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target
22.05.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

Magnesium magnificent for plasmonic applications

23.05.2018 | Materials Sciences

Tunable diamond string may hold key to quantum memory

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>