Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

East Meets West To Solve Space Storm Mystery

19.07.2004


The exploration of near-Earth space will enter a new phase on 26 July when a spacecraft called Tan Ce 2 (Explorer 2) lifts off from Taiyuan spaceport, west of Beijing, on a Chinese Long March 2C rocket. The launch is currently scheduled to take place at 08:23 BST (07:23 GMT).

Tan Ce 2 is the second spacecraft to be built for the Double Star programme, a unique collaboration between Chinese and European scientists. Its predecessor, Tan Ce 1 (Explorer 1), was successfully launched on a similar rocket from a launch site in Xichang on 29 December 2003 and is now returning a rich stream of data.

Eagerly awaited by UK scientists, who have played a major role in the Double Star missions, Tan Ce 2 will complete a six spacecraft Sino-European constellation designed to solve a 30 year-old space mystery: what happens when magnetic storms are generated above the Earth?



Mysterious Storms And Earth’s Magnetic Shield

Double Star is the first Chinese programme dedicated to space science, and the first international space mission involving China. It has been designed to operate alongside the European Space Agency’s groundbreaking Cluster mission, in which a mini-flotilla of spacecraft flies in formation around the Earth.

This joint enterprise involving East and West will revolutionise our knowledge of the Earth’s magnetosphere – the huge, tadpole-shaped region of space dominated by our planet’s magnetic field – and its struggle to protect our planet from the supersonic particles that stream towards us from the Sun.

The four Cluster spacecraft have been orbiting together since 2000, flying over Earth’s magnetic poles and revealing for the first time processes which were only hinted at by earlier missions involving single spacecraft. Together with Cluster, the two Tan Ce spacecraft will be used to study the link between the solar wind and geomagnetic activity, and to provide the most detailed, multi-dimensional view of the complex magnetosphere ever obtained.

The most exciting investigation is the search for the cause of explosive magnetospheric substorms, which has been eluding space scientists since their discovery, more than 30 years ago. These storms can cause havoc with compasses and power systems on the ground.

During August and September, the four Cluster spacecraft will be spending much of their time travelling on the nightside of the Earth, in a region known as the magnetotail. Careful orbit design has arranged that the two Double Star spacecraft will periodically join them in this region. Flying closer to the Earth, they will complete the chain of six spacecraft located at different distances from our planet.

Scientists hope that this arrangement will enable them to tie down the location of the onset of a substorm, when large amounts of energy are explosively released from the Earth’s magnetic field by a process known as magnetic reconnection. This energy accelerates charged particles in the magnetotail and drives powerful electrical currents down into the ionosphere, a region of the upper atmosphere. The most obvious manifestations of these particle streams are spectacular auroral displays and disruptions to the magnetic field.

As yet, no one knows exactly where the energy release process begins, so it is not possible to choose between several theories of the origin of these substorms. Mission scientists hope that accurate measurements by the Cluster/Double Star sextet will answer this problem, and in doing so beat a dedicated five spacecraft mission being developed by NASA (named THEMIS, due for launch in autumn 2006) to solving the mystery!

“On its own, Double Star is scientifically important because it provides new measurements in key regions of magnetosphere,” said Andrew Fazakerley (MSSL-UCL), one of the Principal Scientific Investigators (PIs) from the UK. “For example, it will provide important new information on the Earth’s ever-changing radiation belts.”

“However, the really exciting part is that the orbits of the two spacecraft are explicitly designed for co-ordinated measurements with Cluster,” he added. “So, when Cluster is in the distant magnetic tail and Double Star is in the near tail, we shall be able to see simultaneously for the first time what happens in both of these key regions when the huge amounts of energy that drive the substorms are released.”

UK Experiments

UK teams play major roles in both Double Star and Cluster, both through provision of instruments and involvement in science operations.

Seven of the eight European instruments on the pair of Double Star spacecraft (including five led by the UK) are copies of instruments on Cluster.

The Plasma Electron and Current Experiment (PEACE) on TC-1 and TC-2 was provided by the Cluster team at Mullard Space Science Laboratory, led by Andrew Fazakerley. This measures the speed, direction and population of electrons around the spacecraft.

Principal Investigator for the Fluxgate Magnetometer (FGM) experiments on TC-1 and lead Co-Investigator for the TC-2 FGM is Chris Carr from the Cluster team at Imperial College London. These instruments can measure a magnetic field in space 1,000 times weaker than the field at the Earth’s surface.

An experiment on TC-1 that measures waves (rapid variations in the magnetic field) includes the Digital Wave Processor (DWP) instrument, developed by the Cluster team at the University of Sheffield, under the leadership of Hugo Alleyne.

In addition, Double Star will draw on science operations expertise at the Rutherford Appleton Laboratory (RAL). RAL has been running the Cluster Joint Science Operations Centre (JSOC) since the beginning of 2001 and has adapted this to provide a similar service for Double Star. This European Payload Operations Service (EPOS) works with the European instrument teams on Double Star to co-ordinate the commanding of their instruments and delivers the finalised commanding to the Double Star Science Application System in Beijing.

RAL is also providing the Double Star Data Management System that will exchange key data products generated by the instrument teams between national data centres in Austria, France and the UK, and enable scientists and the general public to browse and retrieve those products.

Mike Hapgood, lead scientist for both the Cluster JSOC and Double Star EPOS, says, “This is a great opportunity to advance our understanding of the large-scale behaviour of the Earth’s magnetosphere.”

Chris Carr | alfa
Further information:
http://www.ic.ac.uk

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>