Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asteroid fragments on a fast collision course

15.07.2004


Collisions in the Asteroid Belt result in the asteroids being completely destroyed and shattered into countless pieces. Computer simulations predict that most of these fragments will eventually fall into the Sun. Some of them, however, will hit the Earth after millions of years as meteorites. It is possible that this could also occur much earlier. In certain positions in the Asteroid Belt, the orbiting time of an object around the sun is a multiple of the orbit of the giant planet Jupiter. The so-called orbital resonance can lead to a disruption in the object’s orbit. It can change the orbit so much that the object would cross the Earth’s orbit and collide with the Earth. Up until today, when this might occur has only been theoretically calculated. But, a new measurement method developed by a research team at the Institute for Isotope Geology at ETH Zurich can now bring more certainty to the subject. The team has established that it could take just a few hundred thousand years for such an object to collide with our planet.

Concentrations of noble gases tell the travel time of an asteroid

Collisional fragments from asteroids in space are constantly being hit by cosmic radiation. This creates noble gases from nuclear reactions. These gases do not enter into any further chemical reactions. Therefore, during the entire duration of the radiation, i.e. the travel time of the fragment in space, they accumulate in the fragment. After measuring the concentration of these socalled cosmogenic inert gases, the travel time from original body to Earth can be calculated. The higher the concentration, the longer the meteorite was underway.



Fossil meteorites: participants in a catastrophe

The researchers used meteorites for their tests that are assumed to be the results of a huge asteroid collision in the recent history of the solar system. These meteorites were found in a stone quarry in southern Sweden in a 480 million year old seabed deposit. What is astonishing is that the fragments still show the traces of the inert gases absorbed more than 500 million years ago.

"Tom Dooley" allows measurement of very small amounts of gas

The Noble Gas Laboratory at ETH Zurich has a highly sensitive mass spectrometer, nicknamed "Tom Dooley", that is specialized for the measurement of extremely small amounts of gas. This instrument, developed at ETH, condenses the test gas into a tiny volume in order to raise the concentration to the point that even rare gases, such as the helium or neon in a single dust particle, can be measured. The sensitivity of this instrument is more than a hundred times higher than conventional mass spectrometers. The device is unique, world wide. Using this instrument, the young researcher Philipp Reza Heck found a method for measuring a very small amount of cosmic inert gas. To do this, just a few micrograms of lightweight meteorite sample is melted with an infrared laser and the gas is then set free and cleaned. Heck then measures the isotopes of the elements helium and neon with "Tom Dooley" spectrometer.

Confirmation of the shorter travel time

With the new method, it could be proven for the first time that the noble gases in the meteorites in southern Sweden were already on in the meteorites 480 million years ago. The calculated travel time was reduced to a few hundred thousand years, which corresponds to the lower limits predicted by the computer simulations. These were the first fragments to arrive on Earth after a great collision. The short radiation age is a clue that the collision took place in the proximity of an orbital resonance in the Asteroid Belt. In addition, it could be proven that the fossil meteorites from southern Sweden all stem from the same event. The newly developed method from the Institute for Isotope Geology makes it possible to confirm the theories about the behaviour of asteroid fragments in space. This will make it significantly easier for researchers to predict future collisions with our planet.

Probala Rolf | alfa
Further information:
http://www.ethz.ch

More articles from Earth Sciences:

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

nachricht Ice stream draining Greenland Ice Sheet sensitive to changes over past 45,000 years
14.05.2018 | Oregon State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>