Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asteroid fragments on a fast collision course

15.07.2004


Collisions in the Asteroid Belt result in the asteroids being completely destroyed and shattered into countless pieces. Computer simulations predict that most of these fragments will eventually fall into the Sun. Some of them, however, will hit the Earth after millions of years as meteorites. It is possible that this could also occur much earlier. In certain positions in the Asteroid Belt, the orbiting time of an object around the sun is a multiple of the orbit of the giant planet Jupiter. The so-called orbital resonance can lead to a disruption in the object’s orbit. It can change the orbit so much that the object would cross the Earth’s orbit and collide with the Earth. Up until today, when this might occur has only been theoretically calculated. But, a new measurement method developed by a research team at the Institute for Isotope Geology at ETH Zurich can now bring more certainty to the subject. The team has established that it could take just a few hundred thousand years for such an object to collide with our planet.

Concentrations of noble gases tell the travel time of an asteroid

Collisional fragments from asteroids in space are constantly being hit by cosmic radiation. This creates noble gases from nuclear reactions. These gases do not enter into any further chemical reactions. Therefore, during the entire duration of the radiation, i.e. the travel time of the fragment in space, they accumulate in the fragment. After measuring the concentration of these socalled cosmogenic inert gases, the travel time from original body to Earth can be calculated. The higher the concentration, the longer the meteorite was underway.



Fossil meteorites: participants in a catastrophe

The researchers used meteorites for their tests that are assumed to be the results of a huge asteroid collision in the recent history of the solar system. These meteorites were found in a stone quarry in southern Sweden in a 480 million year old seabed deposit. What is astonishing is that the fragments still show the traces of the inert gases absorbed more than 500 million years ago.

"Tom Dooley" allows measurement of very small amounts of gas

The Noble Gas Laboratory at ETH Zurich has a highly sensitive mass spectrometer, nicknamed "Tom Dooley", that is specialized for the measurement of extremely small amounts of gas. This instrument, developed at ETH, condenses the test gas into a tiny volume in order to raise the concentration to the point that even rare gases, such as the helium or neon in a single dust particle, can be measured. The sensitivity of this instrument is more than a hundred times higher than conventional mass spectrometers. The device is unique, world wide. Using this instrument, the young researcher Philipp Reza Heck found a method for measuring a very small amount of cosmic inert gas. To do this, just a few micrograms of lightweight meteorite sample is melted with an infrared laser and the gas is then set free and cleaned. Heck then measures the isotopes of the elements helium and neon with "Tom Dooley" spectrometer.

Confirmation of the shorter travel time

With the new method, it could be proven for the first time that the noble gases in the meteorites in southern Sweden were already on in the meteorites 480 million years ago. The calculated travel time was reduced to a few hundred thousand years, which corresponds to the lower limits predicted by the computer simulations. These were the first fragments to arrive on Earth after a great collision. The short radiation age is a clue that the collision took place in the proximity of an orbital resonance in the Asteroid Belt. In addition, it could be proven that the fossil meteorites from southern Sweden all stem from the same event. The newly developed method from the Institute for Isotope Geology makes it possible to confirm the theories about the behaviour of asteroid fragments in space. This will make it significantly easier for researchers to predict future collisions with our planet.

Probala Rolf | alfa
Further information:
http://www.ethz.ch

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>