Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asteroid fragments on a fast collision course

15.07.2004


Collisions in the Asteroid Belt result in the asteroids being completely destroyed and shattered into countless pieces. Computer simulations predict that most of these fragments will eventually fall into the Sun. Some of them, however, will hit the Earth after millions of years as meteorites. It is possible that this could also occur much earlier. In certain positions in the Asteroid Belt, the orbiting time of an object around the sun is a multiple of the orbit of the giant planet Jupiter. The so-called orbital resonance can lead to a disruption in the object’s orbit. It can change the orbit so much that the object would cross the Earth’s orbit and collide with the Earth. Up until today, when this might occur has only been theoretically calculated. But, a new measurement method developed by a research team at the Institute for Isotope Geology at ETH Zurich can now bring more certainty to the subject. The team has established that it could take just a few hundred thousand years for such an object to collide with our planet.

Concentrations of noble gases tell the travel time of an asteroid

Collisional fragments from asteroids in space are constantly being hit by cosmic radiation. This creates noble gases from nuclear reactions. These gases do not enter into any further chemical reactions. Therefore, during the entire duration of the radiation, i.e. the travel time of the fragment in space, they accumulate in the fragment. After measuring the concentration of these socalled cosmogenic inert gases, the travel time from original body to Earth can be calculated. The higher the concentration, the longer the meteorite was underway.



Fossil meteorites: participants in a catastrophe

The researchers used meteorites for their tests that are assumed to be the results of a huge asteroid collision in the recent history of the solar system. These meteorites were found in a stone quarry in southern Sweden in a 480 million year old seabed deposit. What is astonishing is that the fragments still show the traces of the inert gases absorbed more than 500 million years ago.

"Tom Dooley" allows measurement of very small amounts of gas

The Noble Gas Laboratory at ETH Zurich has a highly sensitive mass spectrometer, nicknamed "Tom Dooley", that is specialized for the measurement of extremely small amounts of gas. This instrument, developed at ETH, condenses the test gas into a tiny volume in order to raise the concentration to the point that even rare gases, such as the helium or neon in a single dust particle, can be measured. The sensitivity of this instrument is more than a hundred times higher than conventional mass spectrometers. The device is unique, world wide. Using this instrument, the young researcher Philipp Reza Heck found a method for measuring a very small amount of cosmic inert gas. To do this, just a few micrograms of lightweight meteorite sample is melted with an infrared laser and the gas is then set free and cleaned. Heck then measures the isotopes of the elements helium and neon with "Tom Dooley" spectrometer.

Confirmation of the shorter travel time

With the new method, it could be proven for the first time that the noble gases in the meteorites in southern Sweden were already on in the meteorites 480 million years ago. The calculated travel time was reduced to a few hundred thousand years, which corresponds to the lower limits predicted by the computer simulations. These were the first fragments to arrive on Earth after a great collision. The short radiation age is a clue that the collision took place in the proximity of an orbital resonance in the Asteroid Belt. In addition, it could be proven that the fossil meteorites from southern Sweden all stem from the same event. The newly developed method from the Institute for Isotope Geology makes it possible to confirm the theories about the behaviour of asteroid fragments in space. This will make it significantly easier for researchers to predict future collisions with our planet.

Probala Rolf | alfa
Further information:
http://www.ethz.ch

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>