Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antarctica’s Lake Vostok Has Two Distinct Parts, With Possibly Differing Ecosystems

08.07.2004


Deep in the Antarctic interior, buried under thousands of meters [more than two miles] of ice, lies Lake Vostok, the world’s largest subglacial lake. Scientists believe that the waters of Lake Vostok have not been disturbed for hundreds of thousands of years, and there are tantalizing clues that microbes may exist there that have been isolated for at least as long.

Now, the most comprehensive measurements of the lake--roughly the size of Lake Ontario in North America--indicate that it is divided into two distinct basins that may have different water chemistry and other characteristics. The findings have important implications for the diversity of any microbial life in Lake Vostok and for how scientists should study the lake’s various ecosystems, if an international scientific consensus is ever reached to explore the lake.

Lake Vostok is thought to be a very good terrestrial analogue to the conditions on Europa, a moon of Jupiter thought to hold a large liquid ocean far under its frozen surface. If microbial life can exist in Vostok, scientists have argued, then it also might thrive on Europa.



In a paper published June 19 in Geophysical Research Letters, a journal of the American Geophysical Union, scientists from the Lamont-Doherty Earth Observatory of Columbia University and the University of Tokyo describe the first-ever map of water-depth in Lake Vostok. The ice covering the lake is between 3,700 and 4,300 meters [12,000 and 14,000 feet] thick.

Russia has long maintained a research station at Lake Vostok, and Russian scientists have previously probed the lake with seismic waves. But these soundings produced measurements of the water depth only at isolated points. The new measurements are significant because they provide a comprehensive picture of the entire lakebed and indicate that, contrary what scientists had assumed, the bottom of the lake is not one continuous feature but contains a previously unknown northern sub-basin that is divided from the southern lakebed by a prominent ridge.

Michael Studinger of Lamont-Doherty, a principal author of the paper, said that the existence of two distinct regions with the lake would have significant implications for what sorts of ecosystems scientists should expect to find in the lake and how they should go about exploring them. "The ridge between the two basins will limit water exchange between the two systems," he said. "Consequently, the chemical and biological composition of these two ecosystems is likely to be different."

Using laser altimeter, ice-penetrating radar, and gravity measurements collected by aircraft flying over the lake, Studinger and Robin Bell of Lamont-Doherty and Anahita Tikku, then at the University of Tokyo, estimate that Lake Vostok contains roughly 5,400 cubic kilometers [1,300 cubic miles] of water.

Their measurements also indicate that the lake is divided into two distinct sub-basins, separated by a narrow ridge. The water over that ridge is relatively shallow (200 meters or 650 feet deep), as compared to the rest of the lake, where the water ranges from roughly 400 meters [1,300 feet] deep in the northern basin to 800 meters [2,600 feet] deep in the southern. The National Science Foundation (NSF) supported the research.

The arrangement of the two basins, their separation, and the characteristics of the meltwater may, the scientists conclude, all have implications for the circulation of water within the lake. It is possible, for example, that if the water in the lake were fresh, that meltwater in the northern basin would sink to the bottom of that basin, limiting the exchange of waters between the two basins. The meltwater in the adjacent basin likely would be different. The two lake basins, they argue, could therefore have very different bottoms. They also point out that the waters of the two basins may, as a result of the separation, have a very different chemical, and perhaps even biological, composition.

Scientists involved in deciding whether and how to proceed with an exploration of Lake Vostok have stressed that a great deal of technological development likely would have to take place before a device could be deployed to conduct contamination-free sampling. Currently, there is no scientific sampling of the lake being carried out. The new measurements also indicate that different strategies would probably have to be developed depending on the types of lake sediments targeted. The ultimate goal of any sampling strategy would be to obtain water and sediment samples from the lake bottom.

The Lake mapping would help to guide this scientific work. From the observed melting and freezing patterns of ice moving over Lake Vostok, it is evident that the northern basin would contain recent sediments of rock debris carried from land and deposited into the Lake, says Studinger. The southern basin, where water is frozen back to the base of the ice sheet, would not have these same recent deposits, but would more likely contain sediment deposits that recorded the environmental conditions before the ice sheet sealed off the Lake.

Harvey Leifert | American Geophysical Union
Further information:
http://www.agu.org
http://www.nsf.gov
http://www.ldeo.columbia.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>