Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Largest-ever Air Quality Study Poised to Begin in Seacoast N.H.


They will come by land, sea, and air to probe the skies and take measure of the air we breathe. And the University of New Hampshire will be at the center of it all – the largest and most complex air quality-climate study ever attempted.

Satellites will fly overhead scanning the Earth’s atmosphere, research aircraft will make tight spirals down a 40,000-foot column of air and “sniff” for hundreds of chemical species. Planes will fly wingtip-to-wingtip gathering air samples and comparing measurements to gauge instrument accuracy. Small, high-tech balloons that adjust their height to stay inside a polluted air mass will be launched in hopes of crossing the Atlantic Ocean to see what the United States exports to Europe.

The initiative kicks off when the National Oceanic and Atmospheric Administration’s (NOAA) 274-foot Research Vessel Ronald H. Brown steams into Portsmouth Harbor at the end of June to load the scientific instruments designed for the six-week field experiment. Known as the International Consortium for Atmospheric Research on Transport and Transformation or ICARTT, the study will involve five countries, universities and government agencies, and hundreds of scientists, including researchers, technicians, and students from UNH, which will be the host institution.

In addition to the R/V Brown, scientific platforms will include 12 research aircraft, among them NASA’s DC-8 Airborne Science Lab and the NOAA P-3, three Earth-orbiting satellites – Aqua, Terra, and Envisat, “Smart Balloons,” and ground-based platforms, most prominently UNH’s four AIRMAP (Atmospheric Investigation, Regional Modeling, Analysis and Prediction) observatories strategically located atop Mt. Washington, in Durham and Moultonborough, and on Appledore Island.

The permanent, ground-based AIRMAP atmospheric observatories – some of the most sophisticated in the world – will sample the air day and night for 180 chemicals critical to the region’s air quality. The UNH observatories will serve as the foundation for the study by providing a continuous, long-term record to put into context the snapshots of air quality gathered by the mobile platforms from July 1 to August 15.

"The combination of all these measurements will give us an unprecedented amount of data to better understand regional air quality and help launch the forecasting that NOAA plans for later this year,” says Robert Talbot, who directs both AIRMAP and UNH’s Climate Change Research Center within the Institute for the Study of Earth, Oceans, and Space (EOS).

The three focus areas of the research are regional air quality, intercontinental transport of polluted air masses, and the effects of pollutants on atmospheric cooling and warming. The goal of ICARTT is to enhance the ability to predict and monitor air quality changes, and provide the scientific knowledge needed to make informed decisions. A large contingent of computer modelers and meteorologists will be based at the Pease International Tradeport (as will many of the aircraft) at the ICARTT science “command center,” which will be housed at the New Hampshire Community Technical College. For the science flights that will occur every other day, the modelers and forecasters will predict where planes should be deployed to sample plumes of polluted air. After samples are gathered and measurements are made, the models will be adjusted to improve their forecasting capabilities.

NOAA is mandated to have air quality forecasts up and running soon. Trial forecasts will begin in New England this fall.

An added component of the field campaign, which will be led by UNH researchers and broadens the science to include human health effects, is a study entitled the Integrated Human Health and Air Quality Assessment (INHALE) that directly measures and correlates health effects (e.g., asthma) with changes in air quality. In addition, an economic analysis of the relationship between air quality and emergency room visits, health care system usage, and worker absenteeism and productivity will be conducted.

Denise Hart | newswise
Further information:

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>