Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Largest-ever Air Quality Study Poised to Begin in Seacoast N.H.

30.06.2004


They will come by land, sea, and air to probe the skies and take measure of the air we breathe. And the University of New Hampshire will be at the center of it all – the largest and most complex air quality-climate study ever attempted.



Satellites will fly overhead scanning the Earth’s atmosphere, research aircraft will make tight spirals down a 40,000-foot column of air and “sniff” for hundreds of chemical species. Planes will fly wingtip-to-wingtip gathering air samples and comparing measurements to gauge instrument accuracy. Small, high-tech balloons that adjust their height to stay inside a polluted air mass will be launched in hopes of crossing the Atlantic Ocean to see what the United States exports to Europe.

The initiative kicks off when the National Oceanic and Atmospheric Administration’s (NOAA) 274-foot Research Vessel Ronald H. Brown steams into Portsmouth Harbor at the end of June to load the scientific instruments designed for the six-week field experiment. Known as the International Consortium for Atmospheric Research on Transport and Transformation or ICARTT, the study will involve five countries, universities and government agencies, and hundreds of scientists, including researchers, technicians, and students from UNH, which will be the host institution.


In addition to the R/V Brown, scientific platforms will include 12 research aircraft, among them NASA’s DC-8 Airborne Science Lab and the NOAA P-3, three Earth-orbiting satellites – Aqua, Terra, and Envisat, “Smart Balloons,” and ground-based platforms, most prominently UNH’s four AIRMAP (Atmospheric Investigation, Regional Modeling, Analysis and Prediction) observatories strategically located atop Mt. Washington, in Durham and Moultonborough, and on Appledore Island.

The permanent, ground-based AIRMAP atmospheric observatories – some of the most sophisticated in the world – will sample the air day and night for 180 chemicals critical to the region’s air quality. The UNH observatories will serve as the foundation for the study by providing a continuous, long-term record to put into context the snapshots of air quality gathered by the mobile platforms from July 1 to August 15.

"The combination of all these measurements will give us an unprecedented amount of data to better understand regional air quality and help launch the forecasting that NOAA plans for later this year,” says Robert Talbot, who directs both AIRMAP and UNH’s Climate Change Research Center within the Institute for the Study of Earth, Oceans, and Space (EOS).

The three focus areas of the research are regional air quality, intercontinental transport of polluted air masses, and the effects of pollutants on atmospheric cooling and warming. The goal of ICARTT is to enhance the ability to predict and monitor air quality changes, and provide the scientific knowledge needed to make informed decisions. A large contingent of computer modelers and meteorologists will be based at the Pease International Tradeport (as will many of the aircraft) at the ICARTT science “command center,” which will be housed at the New Hampshire Community Technical College. For the science flights that will occur every other day, the modelers and forecasters will predict where planes should be deployed to sample plumes of polluted air. After samples are gathered and measurements are made, the models will be adjusted to improve their forecasting capabilities.

NOAA is mandated to have air quality forecasts up and running soon. Trial forecasts will begin in New England this fall.

An added component of the field campaign, which will be led by UNH researchers and broadens the science to include human health effects, is a study entitled the Integrated Human Health and Air Quality Assessment (INHALE) that directly measures and correlates health effects (e.g., asthma) with changes in air quality. In addition, an economic analysis of the relationship between air quality and emergency room visits, health care system usage, and worker absenteeism and productivity will be conducted.

Denise Hart | newswise
Further information:
http://www.unh.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>