Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Largest-ever Air Quality Study Poised to Begin in Seacoast N.H.

30.06.2004


They will come by land, sea, and air to probe the skies and take measure of the air we breathe. And the University of New Hampshire will be at the center of it all – the largest and most complex air quality-climate study ever attempted.



Satellites will fly overhead scanning the Earth’s atmosphere, research aircraft will make tight spirals down a 40,000-foot column of air and “sniff” for hundreds of chemical species. Planes will fly wingtip-to-wingtip gathering air samples and comparing measurements to gauge instrument accuracy. Small, high-tech balloons that adjust their height to stay inside a polluted air mass will be launched in hopes of crossing the Atlantic Ocean to see what the United States exports to Europe.

The initiative kicks off when the National Oceanic and Atmospheric Administration’s (NOAA) 274-foot Research Vessel Ronald H. Brown steams into Portsmouth Harbor at the end of June to load the scientific instruments designed for the six-week field experiment. Known as the International Consortium for Atmospheric Research on Transport and Transformation or ICARTT, the study will involve five countries, universities and government agencies, and hundreds of scientists, including researchers, technicians, and students from UNH, which will be the host institution.


In addition to the R/V Brown, scientific platforms will include 12 research aircraft, among them NASA’s DC-8 Airborne Science Lab and the NOAA P-3, three Earth-orbiting satellites – Aqua, Terra, and Envisat, “Smart Balloons,” and ground-based platforms, most prominently UNH’s four AIRMAP (Atmospheric Investigation, Regional Modeling, Analysis and Prediction) observatories strategically located atop Mt. Washington, in Durham and Moultonborough, and on Appledore Island.

The permanent, ground-based AIRMAP atmospheric observatories – some of the most sophisticated in the world – will sample the air day and night for 180 chemicals critical to the region’s air quality. The UNH observatories will serve as the foundation for the study by providing a continuous, long-term record to put into context the snapshots of air quality gathered by the mobile platforms from July 1 to August 15.

"The combination of all these measurements will give us an unprecedented amount of data to better understand regional air quality and help launch the forecasting that NOAA plans for later this year,” says Robert Talbot, who directs both AIRMAP and UNH’s Climate Change Research Center within the Institute for the Study of Earth, Oceans, and Space (EOS).

The three focus areas of the research are regional air quality, intercontinental transport of polluted air masses, and the effects of pollutants on atmospheric cooling and warming. The goal of ICARTT is to enhance the ability to predict and monitor air quality changes, and provide the scientific knowledge needed to make informed decisions. A large contingent of computer modelers and meteorologists will be based at the Pease International Tradeport (as will many of the aircraft) at the ICARTT science “command center,” which will be housed at the New Hampshire Community Technical College. For the science flights that will occur every other day, the modelers and forecasters will predict where planes should be deployed to sample plumes of polluted air. After samples are gathered and measurements are made, the models will be adjusted to improve their forecasting capabilities.

NOAA is mandated to have air quality forecasts up and running soon. Trial forecasts will begin in New England this fall.

An added component of the field campaign, which will be led by UNH researchers and broadens the science to include human health effects, is a study entitled the Integrated Human Health and Air Quality Assessment (INHALE) that directly measures and correlates health effects (e.g., asthma) with changes in air quality. In addition, an economic analysis of the relationship between air quality and emergency room visits, health care system usage, and worker absenteeism and productivity will be conducted.

Denise Hart | newswise
Further information:
http://www.unh.edu

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>