Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Confront The Challenges Of The Arctic In Support Of ESA’s Ice Mission

30.06.2004


Camping out, for anything up to two months, on vast ice sheets in the Arctic is just one of the challenges scientists faced performing the first of a series of six validation experiments in support of ESA’s CryoSat mission.



CryoSat will be the first Earth Explorer to be launched as part of ESA’s Living Planet Programme. Due for launch at the end of this year, it will measure changes in the elevation of ice sheets and sea ice with unprecedented accuracy in order to determine whether or not our planet’s ice masses are thinning due to global warming.

This series of validation experiments are crucial to ensuring that the mission runs smoothly and that the aims of the mission are achieved. Carrying out experiments in the harsh conditions of the Arctic is always punishing, and this first validation campaign, which has just been completed, proved no exception as scientists had to overcome a number of unique challenges.


One of the challenges the scientists faced was the sheer scale of the experiment. It included research scientists from over five different countries and different institutes, all participating in a coordinated measurement program that was to be conducted on the ground as well as from aircraft.

The ground experiments were carried out in remote, and sometimes inhospitable, areas on some of the main ice sheets in the north of Canada, Greenland and Norway. In addition, an aircraft managed by the Alfred Wegner Institute (AWI) in Germany, carried out surveys over each of the in-situ sites using both the ESA radar-altimeter ASIRAS, to simulate CryoSat measurements, and a laser scanner to support the interpretation of the radar measurements. Additional laser measurements were also taken from an Air Greenland plane managed by KMS of Denmark. This plane, equipped with skis so that it was capable of landing on snow and ice, also supported the ground crews in Greenland.

"At this scale, with each of the field teams isolated on the ice, separated from each other by hundreds of kilometres , the key to a successful validation campaign lay in organisation and coordination”, says Malcolm Davidson, ESA’s Validation Manager for CryoSat. “Through a series of planning meetings, at ESA, with the participants, we were able to carefully define the experiments ahead of time and identify how to bring together the aircraft and ground measurements most effectively.”

Taking the ground measurements posed a particular challenge. Scientists spent anything between two weeks and two months camped on the ice sheets collecting data, that will eventually allow ESA to better characterise the performance of the CryoSat mission and lead to better, more accurate measurements of the changes in ice thickness and mass balance. Ground activities included travelling by skidoo across the vast icy expanses with GPS instruments to measure surface topography, digging snow pits to assess the effects of layering below the surface on the CryoSat signal and so-called ‘coffee can’ measurements to determine ice density and depth.

An unexpected challenge during the campaign came when the usually reliable Dornier-228 aircraft, the workhorse for the airborne measurements, experienced technical difficulties with the on-board navigation system. Fortunately, these were solved by flying a technicican to Svalbard to service the aircraft, and developing the appropriate procedures to calibrate the precision navigation-system before each flight.

Uwe Nixdorf, the airborne coordinator from AWI, stated that, "The technical problems with the aircraft posed an additional and unforeseen challenge. However, I am very glad that in the end they were able to be resolved so that we could go on to collect key data at the different sites for the validation of the CryoSat mission. With so much effort that had been put into this campaign, in the air and on the ground, we did not want to fail."

Following the end of the first campaign, the scientists have only a few months to recover, review the data and draw some preliminary conclusions before heading back onto Canada and Greenland’s inhospitable ice sheets for the second validation campaign planned for this autumn.

Mike Rast | alfa
Further information:
http://www.esa.int

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>