Portion of Greenland magnetism comes from extraterrestrial source

Part of the magnetic dust observed in Greenland ice cores may come from extraterrestrial sources, although most of the surface magnetism of ice also comes from iron-rich particles deposited by airborne dust. Lanci et al. used magnetic testing techniques on ice cores from central Greenland to trace the iron oxide content and total dust concentration in polar sources.

They suggest that measuring the magnetic strength of dust deposited on the icy surface can provide researchers an improved method to estimate the source of airborne aerosols and reconstruct ancient climate changes. Such magnetic testing methods had previously been applied to environmental analyses of windblown particles deposited on land but had never been used within ice.

The authors examined the faint magnetic signal from mineral particles trapped under layers of frozen sediment in Greenland and, although they cannot rule out alternative sources of iron dust contamination, found that the observed magnetization is closely correlated with the dust concentration in the ice.

Title: Magnetization of Greenland ice and its relationship with dust content

Media Contact

Luca Lanci Journal of Geophysical Research-

More Information:

http://www.agu.org

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Combatting disruptive ‘noise’ in quantum communication

In a significant milestone for quantum communication technology, an experiment has demonstrated how networks can be leveraged to combat disruptive ‘noise’ in quantum communications. The international effort led by researchers…

Stretchable quantum dot display

Intrinsically stretchable quantum dot-based light-emitting diodes achieved record-breaking performance. A team of South Korean scientists led by Professor KIM Dae-Hyeong of the Center for Nanoparticle Research within the Institute for…

Internet can achieve quantum speed with light saved as sound

Researchers at the University of Copenhagen’s Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic…

Partners & Sponsors