Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Technique Sheds Light On Maya History


There are elaborate hieroglyphs, burial objects and other clues.

But the recent application of a geological technique to an archaeological problem may offer a unique tool for gleaning seemingly unknowable facts about the ancient Maya – based only on excavated bones and teeth.

University of Florida geology Professor David Hodell and Associate Professor Mark Brenner did an elaborate review of the technique, which combines elements of geology, anthropology and forensic science, in the Central American region that was home to the classic Maya civilization. Their conclusion: The method can help determine where long-dead leaders and ordinary residents of such grand settlements as Tikal were born and raised, building on – and sometimes contradicting – history that until recently had been gleaned only from hieroglyphics and other archaeological evidence.

“We were able to demonstrate that you can distinguish between the different parts of the Maya area,” Hodell said of the research, described in a May article in the Journal of Archaeological Science. “You can tell whether an individual was raised in Tikal or whether they came from somewhere else.”

At their peak, from about A.D. 650 to 800, the Maya occupied large city-states spread out across parts of present-day Mexico, Guatemala, western Honduras and Belize. They practiced astronomy, organized their activities around a solar calendar and built enormous stone temples, the ruins of which remain in large abandoned cities and scattered throughout the jungle. Although the Maya empire fell apart from 800 to 1000, isolated settlements persisted through colonization, and many Central Americans speak Mayan languages and practice Maya religions to this day, he said.

For archaeologists, understanding mobility in Maya society – how much and how far people moved – is essential to grasping the rise and fall of their empire.

For example, one important question about Tikal is whether its large population of about 60,000 was the result of local population growth or migration to the area, said Lori Wright, an associate professor of anthropology and bioarcheologist at Texas A&M University in College Station who specializes in the study of skeletal remains.

Until recently, scientists’ main tools included deciphering the stone hieroglyphs that Maya scribes left behind. But while these hieroglyphs, not yet completely translatable, describe movement among Maya elites, they provide few clues about the majority of ordinary residents, Wright said. And as with any society’s official records, some hieroglyphs also may be misleading, she said.

“Hieroglyphs are political documents, and it may be that history is rewritten to suit political themes,” she said, explaining that Maya historians may have wanted to play up a leader’s origins or connections to other cities or regions, even when those connections were tenuous or nonexistent.

Hoping to address the migration issue more definitively, scientists recently began applying a standard geological technique – comparing the ratio of the strontium element isotopes 86 and 87 – to excavated bones and teeth from Maya burial sites.

Because rocks form through a variety of processes and at different times during Earth’s history, strontium 86 and 87 ratios naturally vary from place to place. People readily uptake the isotopes and deposit them in bones and teeth, so those raised in a region underlain by volcanic basalts will have different ratios than those from one underlain by limestone – provided they eat mostly local food, a likely scenario before refrigeration and mechanized transportation.

Strontium isotope ratios are especially revealing for tooth enamel, which is extremely hard and forms during a person’s youth, Hodell said. Bone, on the other hand, can be more telling of a person’s recent whereabouts because it continues to grow slowly throughout life, he said.

Although initial results using the technique on Maya remains over the past few years have been promising, questions persisted about its usefulness and accuracy. Hodell and Brenner’s research represents the first comprehensive assessment of the technique’s capabilities in the Maya region. Along with graduate students Rhonda Quinn and George Kamenov, the researchers surveyed 216 sites throughout Mexico’s Yucatan Peninsula and Guatemala, collecting water, bedrock, soils and plants from a wide area, analyzed the strontium ratios in each, then plotted the results on a map. The project was funded by a $13,000 grant from the UF College of Liberal Arts and Sciences.

The study demonstrated there are five distinct geological regions that can be “readily distinguished” from one another based on strontium isotope ratios – providing a “powerful tool” for archaeologists to determine the origins of skeletal remains in these subregions, the paper says.

Brenner said one reason the method works so well in the Maya lowlands is that the underlying limestone varies so consistently. “In the Maya highlands, the rocks are formed by volcanic and metamorphic processes which have different strontium isotope ratios from the lowlands,” he said.

That said, he cautioned there also can be some overlap between regions, which could confound results and is one limitation they discovered.

Wright said the technique has revealed that several of the skeletons she is examining from Tikal are not those of longtime residents of the city. "Some of the data is contradicting what the hieroglyphs suggest about the identity of some skeletons," Wright said.

| newswise
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

More VideoLinks >>>