Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technique Sheds Light On Maya History

23.06.2004


There are elaborate hieroglyphs, burial objects and other clues.

But the recent application of a geological technique to an archaeological problem may offer a unique tool for gleaning seemingly unknowable facts about the ancient Maya – based only on excavated bones and teeth.

University of Florida geology Professor David Hodell and Associate Professor Mark Brenner did an elaborate review of the technique, which combines elements of geology, anthropology and forensic science, in the Central American region that was home to the classic Maya civilization. Their conclusion: The method can help determine where long-dead leaders and ordinary residents of such grand settlements as Tikal were born and raised, building on – and sometimes contradicting – history that until recently had been gleaned only from hieroglyphics and other archaeological evidence.



“We were able to demonstrate that you can distinguish between the different parts of the Maya area,” Hodell said of the research, described in a May article in the Journal of Archaeological Science. “You can tell whether an individual was raised in Tikal or whether they came from somewhere else.”

At their peak, from about A.D. 650 to 800, the Maya occupied large city-states spread out across parts of present-day Mexico, Guatemala, western Honduras and Belize. They practiced astronomy, organized their activities around a solar calendar and built enormous stone temples, the ruins of which remain in large abandoned cities and scattered throughout the jungle. Although the Maya empire fell apart from 800 to 1000, isolated settlements persisted through colonization, and many Central Americans speak Mayan languages and practice Maya religions to this day, he said.

For archaeologists, understanding mobility in Maya society – how much and how far people moved – is essential to grasping the rise and fall of their empire.

For example, one important question about Tikal is whether its large population of about 60,000 was the result of local population growth or migration to the area, said Lori Wright, an associate professor of anthropology and bioarcheologist at Texas A&M University in College Station who specializes in the study of skeletal remains.

Until recently, scientists’ main tools included deciphering the stone hieroglyphs that Maya scribes left behind. But while these hieroglyphs, not yet completely translatable, describe movement among Maya elites, they provide few clues about the majority of ordinary residents, Wright said. And as with any society’s official records, some hieroglyphs also may be misleading, she said.

“Hieroglyphs are political documents, and it may be that history is rewritten to suit political themes,” she said, explaining that Maya historians may have wanted to play up a leader’s origins or connections to other cities or regions, even when those connections were tenuous or nonexistent.

Hoping to address the migration issue more definitively, scientists recently began applying a standard geological technique – comparing the ratio of the strontium element isotopes 86 and 87 – to excavated bones and teeth from Maya burial sites.

Because rocks form through a variety of processes and at different times during Earth’s history, strontium 86 and 87 ratios naturally vary from place to place. People readily uptake the isotopes and deposit them in bones and teeth, so those raised in a region underlain by volcanic basalts will have different ratios than those from one underlain by limestone – provided they eat mostly local food, a likely scenario before refrigeration and mechanized transportation.

Strontium isotope ratios are especially revealing for tooth enamel, which is extremely hard and forms during a person’s youth, Hodell said. Bone, on the other hand, can be more telling of a person’s recent whereabouts because it continues to grow slowly throughout life, he said.

Although initial results using the technique on Maya remains over the past few years have been promising, questions persisted about its usefulness and accuracy. Hodell and Brenner’s research represents the first comprehensive assessment of the technique’s capabilities in the Maya region. Along with graduate students Rhonda Quinn and George Kamenov, the researchers surveyed 216 sites throughout Mexico’s Yucatan Peninsula and Guatemala, collecting water, bedrock, soils and plants from a wide area, analyzed the strontium ratios in each, then plotted the results on a map. The project was funded by a $13,000 grant from the UF College of Liberal Arts and Sciences.

The study demonstrated there are five distinct geological regions that can be “readily distinguished” from one another based on strontium isotope ratios – providing a “powerful tool” for archaeologists to determine the origins of skeletal remains in these subregions, the paper says.

Brenner said one reason the method works so well in the Maya lowlands is that the underlying limestone varies so consistently. “In the Maya highlands, the rocks are formed by volcanic and metamorphic processes which have different strontium isotope ratios from the lowlands,” he said.

That said, he cautioned there also can be some overlap between regions, which could confound results and is one limitation they discovered.

Wright said the technique has revealed that several of the skeletons she is examining from Tikal are not those of longtime residents of the city. "Some of the data is contradicting what the hieroglyphs suggest about the identity of some skeletons," Wright said.

| newswise
Further information:
http://www.ufl.edu

More articles from Earth Sciences:

nachricht New plate adds plot twist to ancient tectonic tale
15.08.2017 | Rice University

nachricht Global warming will leave different fingerprints on global subtropical anticyclones
14.08.2017 | Institute of Atmospheric Physics, Chinese Academy of Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>