Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Observations on Shape of Ocean Mountain Ranges Turn an Old Idea Upside Down

23.06.2004


Figure 1. Perspective view from the south of the mid-ocean ridge off the coast of Central America (far distance) showing how the morphology of this spreading ridge changes across transform faults and smaller ridge offsets. Note how the more westerly segments (offset in the direction of ridge migration) are shallower and broader than their neighbors. Image credit: Bill Haxby


Figure 2. Close-up perspective view from figure above showing how the shape and height of the ridge axis changes across a major transform fault. Image credit: Bill Haxby


New findings suggest that surface geometry determines volcanic activity

What causes the peaks and valleys of the world’s great mountains? For continental ranges like the Appalachians or the Northwest’s Cascades, the geological picture is clearer. Continents crash or volcanoes erupt, then glaciers erode away. Yet scientists are still puzzling out what makes the highs high and the lows low for the planet’s largest mountain chain, the 55,000-mile-long Mid-Ocean Ridge.

This week in the journal Nature, scientists at Columbia University’s Lamont Doherty Earth Observatory describe new findings that challenge current thinking about how the silhouette of the mile’s high deepwater ridge is formed.



The long string of mountains that zig-zags across the ocean floor define the boundaries of the crustal plates that make up the Earth’s surface. At the center of the Mid-Ocean Ridge is a continuous fissure in which hot magma bubbles up from below and cools to become new crust material added to the plates on either side. For decades, the most popular explanation for the ridge’s distinct undulating topography has been that magma flows upward from the mantle interior in directed streams of differing sizes. Larger magma flows lead to higher, broader peaks, while a magma trickle or drought is reflected in lower, more narrow valleys.

But after analyzing thousands of miles of the Mid-Ocean Ridge, Lamont marine geologist Suzanne Carbotte and co-authors Christopher Small and Katie Donnelly disagree. They discovered that the height and width of underwater mountains are highly correlated to the direction that the ridge and connecting plates move across the surface of the planet.

“Our observations indicate that these variations in ridge height reflect a top down rather than a bottom up process,” said Carbotte. “The motion of the plates seems to be the important factor, not the mantle.”

The twelve crustal plates that make up the surface of the Earth are constantly jostling each other as some grow in size and others shrink. In response, the Mid-Ocean Ridge migrates very slowly, moving at a rate of about an inch a decade in relation to fixed hot areas of the mantle below. Each underwater range in the mountain chain can be offset from the next by up to hundreds of miles, connected by a long perpendicular fault line. This geometry creates distinct ridge segments jutting back and forth.

Their results have implications for geologists concerned with crust and mantle structure, as well as for biologists interested in life around hydrothermal vents. Previously, many scientists believed that the structure of the upper mantle must be both physically and chemically diverse in order to explain the peaks and valleys along the Mid-Ocean Ridge. This implied that ridge segment would spend time above both high and low magma streams as it travels over the mantle.

“Our findings suggest that the upper mantle could be quite uniform and still produce a varied topography due solely to plate migration,” said Carbotte. “This has all sorts of implications. For example, if certain ridge segments are just more volcanically active than others due simply to their geometry, those locations may host hydrothermal communities over very long periods of time.”

This study was funded by The National Science Foundation.

The Lamont-Doherty Earth Observatory, a member of The Earth Institute at Columbia University, is one of the world’s leading research centers examining the planet from its core to its atmosphere, across every continent and every ocean. From global climate change to earthquakes, volcanoes, environmental hazards and beyond, Observatory scientists provide the basic knowledge of Earth systems needed to inform the future health and habitability of our planet. For more information, visit www.ldeo.columbia.edu.

The Earth Institute at Columbia University is among the world’s leading academic centers for the integrated study of Earth, its environment, and society. The Earth Institute builds upon excellence in the core disciplines—earth sciences, biological sciences, engineering sciences, social sciences and health sciences—and stresses cross-disciplinary approaches to complex problems. Through its research training and global partnerships, it mobilizes science and technology to advance sustainable development, while placing special emphasis on the needs of the world’s poor.

Mary Tobin | EurekAlert!
Further information:
http://www.earth.columbia.edu

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>