Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AIM Mission To Study Noctilucent Clouds

22.06.2004


The University of Colorado at Boulder’s Laboratory for Atmospheric and Space Physics has been selected by NASA to build two of the three instruments for a satellite that will launch in 2006 to study noctilucent clouds, the shiny, silvery-blue polar mesospheric clouds that form about 50 miles over Earth’s polar regions each summer.

The Aeronomy of Ice in the Mesosphere mission, or AIM, will receive $100 million in NASA funding for development and flight of the satellite. CU’s LASP will receive about $20 million for the design and construction of two instruments, satellite control and data analysis, according to Professor Gary Thomas of LASP. Thomas is professor emeritus in CU-Boulder’s department of astrophysical and planetary sciences.

“We have evidence that the brightness and frequency of these clouds has been increasing,” said David Rusch, lead scientist for one of the LASP instruments.



“The AIM mission should reveal the underlying causes for these changes.”

AIM also will help scientists determine whether incoming dust triggers or inhibits the formation of mesospheric ice clouds, or noctilucent clouds, Rusch said.

Noctilucent, or “night-shining,” clouds occur in the summer mesosphere, the coldest place in the atmosphere, said Thomas. They were first reported in northern high latitudes in 1885. But their increasing brightness and frequency over the past several decades has scientists wondering if a long-term increase in carbon dioxide and methane -- greenhouse gases of anthropogenic and natural origin -- are making the clouds more prevalent.

Noctilucent cloud formation is believed to be hastened by increasing amounts of carbon dioxide in the atmosphere, Thomas said. While CO2 is thought to contribute to global warming on Earth, ironically it also cools the middle and upper atmospheres.

Thomas predicted in 1994 that noctilucent clouds would continue to brighten and be visible over the continental United States by the 21st century. The clouds, which normally appear each year in the far northern and southern latitudes, were spotted over Colorado for the first time on June 22, 1999 from Coal Creek Canyon south of Boulder. The previous record for the southernmost sighting of noctilucent clouds in the continental United States was in Montana.

“This was a big event,” Thomas said. “While they are a beautiful phenomenon, these clouds may be a message from Mother Nature that we are upsetting the equilibrium of the atmosphere.”

The AIM satellite will be launched in fall 2006 into a polar orbit about 370 miles above Earth, said Thomas. “We will receive and analyze data at our new LASP facility to be completed in 2005.”

In addition to controlling the AIM spacecraft from its east campus headquarters, LASP will design and build the Cloud Imaging and Particle Size instrument that will produce images of the polar mesospheric clouds and measure the sizes of particles within them, Thomas said. The second instrument being designed and built at LASP, the Cosmic Dust Experiment, will detect cosmic dust particles entering the atmosphere, said Rusch.

The third instrument, an infrared solar occultation radiometer called SOPHIE, will be built by Utah State University in conjunction with Orbital Science Corp.

The AIM mission is led by principal investigator James Russell III of Hampton University in Hampton, Va. The deputy principal investigator is Scott Bailey, a former LASP researcher who is now a faculty member at the University of Alaska-Fairbanks.

LASP’s Michael McGrath is the AIM project manager. Co-investigators on the 14-member science team include LASP researchers Thomas, Rusch, Mihaly Horanyi, Cora Randall and William McClintock. The project will involve several graduate and undergraduate students in instrument development, satellite control and data analysis, Rusch said.

AIM is part of NASA’s Small Explorer program, which was designed to provide frequent, low-cost access to space for physics and astronomy missions with small- to- mid-sized spacecraft. The AIM mission is expected to span a six-year period.

UCB | newswise
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>