Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AIM Mission To Study Noctilucent Clouds

22.06.2004


The University of Colorado at Boulder’s Laboratory for Atmospheric and Space Physics has been selected by NASA to build two of the three instruments for a satellite that will launch in 2006 to study noctilucent clouds, the shiny, silvery-blue polar mesospheric clouds that form about 50 miles over Earth’s polar regions each summer.

The Aeronomy of Ice in the Mesosphere mission, or AIM, will receive $100 million in NASA funding for development and flight of the satellite. CU’s LASP will receive about $20 million for the design and construction of two instruments, satellite control and data analysis, according to Professor Gary Thomas of LASP. Thomas is professor emeritus in CU-Boulder’s department of astrophysical and planetary sciences.

“We have evidence that the brightness and frequency of these clouds has been increasing,” said David Rusch, lead scientist for one of the LASP instruments.



“The AIM mission should reveal the underlying causes for these changes.”

AIM also will help scientists determine whether incoming dust triggers or inhibits the formation of mesospheric ice clouds, or noctilucent clouds, Rusch said.

Noctilucent, or “night-shining,” clouds occur in the summer mesosphere, the coldest place in the atmosphere, said Thomas. They were first reported in northern high latitudes in 1885. But their increasing brightness and frequency over the past several decades has scientists wondering if a long-term increase in carbon dioxide and methane -- greenhouse gases of anthropogenic and natural origin -- are making the clouds more prevalent.

Noctilucent cloud formation is believed to be hastened by increasing amounts of carbon dioxide in the atmosphere, Thomas said. While CO2 is thought to contribute to global warming on Earth, ironically it also cools the middle and upper atmospheres.

Thomas predicted in 1994 that noctilucent clouds would continue to brighten and be visible over the continental United States by the 21st century. The clouds, which normally appear each year in the far northern and southern latitudes, were spotted over Colorado for the first time on June 22, 1999 from Coal Creek Canyon south of Boulder. The previous record for the southernmost sighting of noctilucent clouds in the continental United States was in Montana.

“This was a big event,” Thomas said. “While they are a beautiful phenomenon, these clouds may be a message from Mother Nature that we are upsetting the equilibrium of the atmosphere.”

The AIM satellite will be launched in fall 2006 into a polar orbit about 370 miles above Earth, said Thomas. “We will receive and analyze data at our new LASP facility to be completed in 2005.”

In addition to controlling the AIM spacecraft from its east campus headquarters, LASP will design and build the Cloud Imaging and Particle Size instrument that will produce images of the polar mesospheric clouds and measure the sizes of particles within them, Thomas said. The second instrument being designed and built at LASP, the Cosmic Dust Experiment, will detect cosmic dust particles entering the atmosphere, said Rusch.

The third instrument, an infrared solar occultation radiometer called SOPHIE, will be built by Utah State University in conjunction with Orbital Science Corp.

The AIM mission is led by principal investigator James Russell III of Hampton University in Hampton, Va. The deputy principal investigator is Scott Bailey, a former LASP researcher who is now a faculty member at the University of Alaska-Fairbanks.

LASP’s Michael McGrath is the AIM project manager. Co-investigators on the 14-member science team include LASP researchers Thomas, Rusch, Mihaly Horanyi, Cora Randall and William McClintock. The project will involve several graduate and undergraduate students in instrument development, satellite control and data analysis, Rusch said.

AIM is part of NASA’s Small Explorer program, which was designed to provide frequent, low-cost access to space for physics and astronomy missions with small- to- mid-sized spacecraft. The AIM mission is expected to span a six-year period.

UCB | newswise
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>