Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


AIM Mission To Study Noctilucent Clouds


The University of Colorado at Boulder’s Laboratory for Atmospheric and Space Physics has been selected by NASA to build two of the three instruments for a satellite that will launch in 2006 to study noctilucent clouds, the shiny, silvery-blue polar mesospheric clouds that form about 50 miles over Earth’s polar regions each summer.

The Aeronomy of Ice in the Mesosphere mission, or AIM, will receive $100 million in NASA funding for development and flight of the satellite. CU’s LASP will receive about $20 million for the design and construction of two instruments, satellite control and data analysis, according to Professor Gary Thomas of LASP. Thomas is professor emeritus in CU-Boulder’s department of astrophysical and planetary sciences.

“We have evidence that the brightness and frequency of these clouds has been increasing,” said David Rusch, lead scientist for one of the LASP instruments.

“The AIM mission should reveal the underlying causes for these changes.”

AIM also will help scientists determine whether incoming dust triggers or inhibits the formation of mesospheric ice clouds, or noctilucent clouds, Rusch said.

Noctilucent, or “night-shining,” clouds occur in the summer mesosphere, the coldest place in the atmosphere, said Thomas. They were first reported in northern high latitudes in 1885. But their increasing brightness and frequency over the past several decades has scientists wondering if a long-term increase in carbon dioxide and methane -- greenhouse gases of anthropogenic and natural origin -- are making the clouds more prevalent.

Noctilucent cloud formation is believed to be hastened by increasing amounts of carbon dioxide in the atmosphere, Thomas said. While CO2 is thought to contribute to global warming on Earth, ironically it also cools the middle and upper atmospheres.

Thomas predicted in 1994 that noctilucent clouds would continue to brighten and be visible over the continental United States by the 21st century. The clouds, which normally appear each year in the far northern and southern latitudes, were spotted over Colorado for the first time on June 22, 1999 from Coal Creek Canyon south of Boulder. The previous record for the southernmost sighting of noctilucent clouds in the continental United States was in Montana.

“This was a big event,” Thomas said. “While they are a beautiful phenomenon, these clouds may be a message from Mother Nature that we are upsetting the equilibrium of the atmosphere.”

The AIM satellite will be launched in fall 2006 into a polar orbit about 370 miles above Earth, said Thomas. “We will receive and analyze data at our new LASP facility to be completed in 2005.”

In addition to controlling the AIM spacecraft from its east campus headquarters, LASP will design and build the Cloud Imaging and Particle Size instrument that will produce images of the polar mesospheric clouds and measure the sizes of particles within them, Thomas said. The second instrument being designed and built at LASP, the Cosmic Dust Experiment, will detect cosmic dust particles entering the atmosphere, said Rusch.

The third instrument, an infrared solar occultation radiometer called SOPHIE, will be built by Utah State University in conjunction with Orbital Science Corp.

The AIM mission is led by principal investigator James Russell III of Hampton University in Hampton, Va. The deputy principal investigator is Scott Bailey, a former LASP researcher who is now a faculty member at the University of Alaska-Fairbanks.

LASP’s Michael McGrath is the AIM project manager. Co-investigators on the 14-member science team include LASP researchers Thomas, Rusch, Mihaly Horanyi, Cora Randall and William McClintock. The project will involve several graduate and undergraduate students in instrument development, satellite control and data analysis, Rusch said.

AIM is part of NASA’s Small Explorer program, which was designed to provide frequent, low-cost access to space for physics and astronomy missions with small- to- mid-sized spacecraft. The AIM mission is expected to span a six-year period.

UCB | newswise
Further information:

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>