Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU EPICA research project: solving the climate change puzzle?

18.06.2004


Today the European Commission presented the latest results of the EU-funded EPICA (European Ice Core Project in Antarctica) initiative. Scientists from 10 European countries including Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Sweden, Switzerland, and the UK have dug 3 kilometres-deep into the Antarctic ice crust and brought to the surface a 740, 000-year old ice core. It is the oldest ever analysed and records climate history. It shows changes in temperature and concentrations of gases and particles in the atmosphere. The results will feed into computer models used to predict future climate. Preliminary results show that, without human influence, the present “warm season” in Earth’s climate could last for 15 000 years more. But since the present carbon dioxide concentration is the highest in the last 440,000 years, by understanding past changes in climate, it will be possible to forecast future climate change due to human activities. Further results of the EPICA project will be disclosed at the “Palaeoclimate Conference: Reducing the Uncertainties” in Utrecht, the Netherlands, on July 6-10, 2004.

European Research Commissioner Philippe Busquin said: “I am proud to see that EU research is at the forefront of climate change research. Thanks to the EU’s research programmes, European scientists are able to work together and be at the cutting edge of science, in climate change research as in other fields. When European researchers work together, they are the best.”


Secrets of past climate

The core from Antarctica’s plateau contains snowfall from the last 740,000 years. Researchers extract air from tiny bubbles in the ice: analysis of the chemical composition and physical properties of the snow and the trapped air, including atmospheric gases such as CO2 and methane, shows how the Earth’s climate has changed over time. Analyses show that over the last 740,000 years the Earth experienced eight ice ages, when Earth’s climate was much colder than today, and eight warmer periods. In the last 400,000 years the warm periods have had a temperature similar to that of today. Before that time they were less warm, but lasted longer.


Ice age

The ice cores are cylinders of ice 10 cm in diameter that are brought to the surface in lengths of about 3 metres at a time. Snowflakes collect particles from the atmosphere, and pockets of air become trapped between snow crystals as ice is formed.

By comparing the pattern of this past climate with global environmental conditions today the scientists have concluded that, without human influence, the present warm period should last another 15 000 years. But human activities, such as changes in land use and greenhouse gas emissions, were much less relevant in the past – and might significantly change the future of climate.

Carbon dioxide levels are the highest they have been in the last 440,000 years. By understanding the evolution of climate in the past, EU scientists will be able to forecast future changes, in particular assessing the impact of human activities.


Extreme research conditions

EU scientists drilled the thick Antarctic surface at minus 40° in summer, in a remote location a thousand kilometres away from the nearest research station. Average annual temperatures are below –54 degrees Celsius. Researchers will keep drilling until the end of the year to reach the rocks at the base of the ice sheet. They should then reach ice over 900,000 years old at the base.


Fabio Fabbi | European commission
Further information:
http://europa.eu.int

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>