Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU EPICA research project: solving the climate change puzzle?

18.06.2004


Today the European Commission presented the latest results of the EU-funded EPICA (European Ice Core Project in Antarctica) initiative. Scientists from 10 European countries including Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Sweden, Switzerland, and the UK have dug 3 kilometres-deep into the Antarctic ice crust and brought to the surface a 740, 000-year old ice core. It is the oldest ever analysed and records climate history. It shows changes in temperature and concentrations of gases and particles in the atmosphere. The results will feed into computer models used to predict future climate. Preliminary results show that, without human influence, the present “warm season” in Earth’s climate could last for 15 000 years more. But since the present carbon dioxide concentration is the highest in the last 440,000 years, by understanding past changes in climate, it will be possible to forecast future climate change due to human activities. Further results of the EPICA project will be disclosed at the “Palaeoclimate Conference: Reducing the Uncertainties” in Utrecht, the Netherlands, on July 6-10, 2004.

European Research Commissioner Philippe Busquin said: “I am proud to see that EU research is at the forefront of climate change research. Thanks to the EU’s research programmes, European scientists are able to work together and be at the cutting edge of science, in climate change research as in other fields. When European researchers work together, they are the best.”


Secrets of past climate

The core from Antarctica’s plateau contains snowfall from the last 740,000 years. Researchers extract air from tiny bubbles in the ice: analysis of the chemical composition and physical properties of the snow and the trapped air, including atmospheric gases such as CO2 and methane, shows how the Earth’s climate has changed over time. Analyses show that over the last 740,000 years the Earth experienced eight ice ages, when Earth’s climate was much colder than today, and eight warmer periods. In the last 400,000 years the warm periods have had a temperature similar to that of today. Before that time they were less warm, but lasted longer.


Ice age

The ice cores are cylinders of ice 10 cm in diameter that are brought to the surface in lengths of about 3 metres at a time. Snowflakes collect particles from the atmosphere, and pockets of air become trapped between snow crystals as ice is formed.

By comparing the pattern of this past climate with global environmental conditions today the scientists have concluded that, without human influence, the present warm period should last another 15 000 years. But human activities, such as changes in land use and greenhouse gas emissions, were much less relevant in the past – and might significantly change the future of climate.

Carbon dioxide levels are the highest they have been in the last 440,000 years. By understanding the evolution of climate in the past, EU scientists will be able to forecast future changes, in particular assessing the impact of human activities.


Extreme research conditions

EU scientists drilled the thick Antarctic surface at minus 40° in summer, in a remote location a thousand kilometres away from the nearest research station. Average annual temperatures are below –54 degrees Celsius. Researchers will keep drilling until the end of the year to reach the rocks at the base of the ice sheet. They should then reach ice over 900,000 years old at the base.


Fabio Fabbi | European commission
Further information:
http://europa.eu.int

More articles from Earth Sciences:

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>