Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists map Cartwright country

16.06.2004


’Big Bonanza’ and the Comstock Lode



Remember the burning Ponderosa map at the beginning of the long-running TV show "Bonanza"? It’s up in flames before you can read all the place names.
Now a geologist at Washington University in St. Louis has replaced that map with one of the famous ore site known as the Comstock Lode, a part of which is the "Big Bonanza."

While it’s doubtful that Hoss, Adam and Little Joe – not to mention the sages, Pa and Hop Sing – could make heads nor tails of it, the map is a valuable contribution to geology because it gives an interpretation of the flow of hot waters interacting with rock some 14 million years ago that created the ore district. Between 1859 and 1882, the Comstock Lode produced gold and silver in such quantities that the bullion would be worth several billion dollars in today’s markets.



Robert Criss, Ph.D., professor of earth and planetary sciences in Arts & Sciences, and his former graduate student Michael J. Singleton, Ph.D., now at Lawrence Berkeley National Laboratory, analyzed 327 rock samples collected from a portion of the Comstock Lode as well as historical samples and ones from the Smithsonian Institute and "visualized" a kind of symmetrical flow. They were able to determine the flow thanks to a mathematical technique called kriging that allows computer contouring of oxygen isotope data gleaned from the rock samples.

When water and rock interact in ore deposition they exchange isotopes. Isotopes are different variations of the same element. There are three oxygen isotopes, oxygen-16, -17 and -18. All three behave chemically as oxygen, differing only in their mass. Most is oxygen-16, but about one oxygen atom in 500 is oxygen-18, and only one in about 2,500 is oxygen-17. Rocks are about 50 percent oxygen by weight, water 90 percent. The exchange of isotopes – the researchers measured O-16 and O-18– creates "patterns of disturbance" in the rock, which the researchers can map by combining a lot of field work with lab analysis and computing.

"We can map and interpret these patterns long after the disturbance happened -– 12 to 14 million years ago" said Criss. " The rocks preserve a record of what happened."

Criss said the hydrothermal flow geometry that created the ore district was a longitudinal roll pattern superimposed on a unicellular flow system. Think of the longitudinal rolls as two parallel tubes and the unicellular system as a flat roll. The map is the first evidence showing the longitudinal roll pattern occurring in nature. The system had been predicted by theory but never seen before in an ore district.

"We’ve shown that these modes of convection can occur on Earth under the right circumstances," Criss said. "It’s the first description of such symmetry in an ore district. The ore body positions have an obvious relationship to these rolls. "

The research was published in the April issue of the Journal of Geophysical Research. It was supported by funding from the National Science Foundation.

The finding is important for geologists to understand the creation of ore deposits. These events occur underground and must be analyzed remotely. And it could have economic implications.

"It’s possible, under perfect conditions, to understand currents of fluid that make ore bodies," Criss said. "If this could become part of a predictive tool to locate currents that form ore bodies, that would be a valuable outcome because we don’t have very good theories on how ore bodies are formed. It’s a very peculiar process."

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu/

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>