Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

52 thousand years of marine fertility sheds light on climate change

14.06.2004


New reserach by Columbia University



For years, researchers have examined climate records indicating that millennial-scale climate cycles have linked the high latitudes of the Northern hemisphere and the subtropics of the North Pacific Ocean. What forces this linkage, however, has been a topic of considerable debate. Did the connection originate in the North Pacific with the sinking of oxygen-rich waters into the interior of the ocean during cool climate intervals, or did it originate in the subtropical Pacific with the transfer of heat between the ocean and the atmosphere?

New research, led by scientists from the Lamont-Doherty Earth Observatory of Columbia University and publishing in the June issue of the journal Geology, shows that over the last 52 thousand years, these millennial-scale climate shifts linking the high latitudes of the Northern hemisphere with the subtropical Pacific have been associated with large variations in marine productivity off the coast of western North America. Changes in marine fertility in this area probably arose from local changes in subsurface nutrients concentrations that were driven remotely by wind patterns at low latitude. These millennial-scale climate cycles may have been driven by forces similar to El Niño-Southern Oscilations originating in the tropical Pacific on shorter time scales.


"Such records provide an indication of the way climate has changed in the past and, therefore, hopefully also an indication of the way climate may change in the future," says Lex van Geen, Doherty Senior Research Scientist, Lamont-Doherty Earth Observatory, and Chief Scientist of the oceanographic expedition that collected the sediment cores used for this study.

These findings overturn the previously held theory that bottom-water oxygen levels in Santa Barbara Basin off California were primarily linked to changes in ventilation of the North Pacific rather than changes in marine productivity. The evidence for the newly proposed theory was found in a 15-m-long sediment record, spanning the past 52 thousand years, collected off Baja California, Mexico in 1999.

The core comes from a site with high sedimentation rates (30 cm/thousand years). The sediments indicate a remarkably consistent teleconnection between changes in marine productivity at this eastern Pacific location, as indicated by several independent proxies, with millennial-scale climate change over the North Atlantic, as recorded by the oxygen isotopic composition of Greenland ice.

"The strength of the connection between the temperature record over Greenland and marine production off Baja California really challenges our understanding of the linkage between high and low latitude climate processes. Our results imply that variations in the workings of the equatorial heat engine may be as important as high latitude processes at millennial timescales," states Joseph Ortiz, Assistant Professor of Geology at Kent State University and first author of the Geology research paper. Dr. Ortiz began working on this research project as a Doherty Associate Research Scientist at the Lamont-Doherty Earth Observatory of The Earth Institute at Columbia University.

A possible interpretation of the new data is that the current balance of El Niño/La Niña conditions in the Pacific Ocean, which favor the supply of nutrients to the surface ocean and therefore high marine productivity today and during warm climate intervals of the past 52 thousand years, was altered towards El Niño-like conditions and a lower supply of nutrients during cool climate intervals.

Researchers on this paper include A. van Geen, Columbia University, J.D. Ortiz, Kent State University, S.B. O’Connell and J. DelViscio, Wesleyan University, W. Dean, U.S. Geological Survey, J.D. Carriquiry, Universidad Autonoma de Baja California, T. Marchitto, University of Colorado (formerly at Columbia University), and Y. Zheng, Queens College of the City University of New and Columbia University. This collaboration was funded primarily by the National Science Foundation.

The same team of scientists is currently working on a sediment core collected during the same 1999 expedition from the Soledad Basin (25 °N), an anoxic basin with many of the same desirable properties as the Santa Barbara Basin, but located closer to the tropics, a region that some scientists consider to be an important driver of climate change in the past. Sedimentation rates in this basin are 110 cm/thousand years.

Mary Tobin | EurekAlert!
Further information:
http://www.ldeo.columbia.edu/

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>