Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

URI oceanographers find gulf stream migration affects biological productivity in unexpected way

04.06.2004


Situated between the continental shelf of the eastern United States and the north wall of the Gulf Stream flowing eastward from Cape Hatteras, the Slope Sea is a transition region between the productively rich coastal waters and the productively static open ocean.



In the current SeaWiFS special issue of Deep Sea Research II, University of Rhode Island oceanographers Stephanie E. Schollaert, Thomas Rossby, and James Yoder describe their four-year, NASA-funded study of the Slope Sea along the Gulf Stream in order to understand the processes that control the yearly variability of surface concentrations of chlorophyll, the pigment found in plants and algae.

Annually, cold, fresh Labrador waters "spill" into the Slope Sea, influencing the path of the Gulf Stream, pushing it south in the spring. Since the advent of ocean color remote sensing in 1978 and particularly since the 1997 launch of the dedicated ocean color sensor SeaWiFS, the surface chlorophyll concentration of waters off the U.S. east coast have been found to be highest in the north (e.g., Gulf of Maine, Georges Bank, Labrador shelf) and during the winter when the Gulf Stream is farthest south and more Labrador water is present.


The scientists expected that during the years when the Slope Sea expanded due to a greater transport of Labrador water, primary productivity, or the production of plankton that forms the basis of the food chain, would be increased. However, their results showed the opposite effect.

The Gulf Stream location determines the area of the Slope Sea and the extent to which nutrients are present. Years when the Gulf Stream is farther south the average chlorophyll concentrations are smaller and vice-versa when the Gulf Stream is offset to the north. An increased number of Gulf Stream rings may also play an important role in supplying additional nutrients to the surface waters. While the north-south movement of the Gulf Stream is the primary determinant of Slope Sea chlorophyll concentrations, the current’s movement may also generate other effects that may influence biological productivity. Understanding how the Gulf Stream’s migration affects biological productivity in the Slope Sea will help scientists make inferences about large-scale, low frequency climatic effects upon the carbon cycle of ocean margin waters.


The URI Graduate School of Oceanography is one of the country’s largest marine science education programs, and one of the world’s foremost marine research institutions. Founded in 1961 in Narragansett, RI, GSO serves a community of scientists who are researching the causes of and solutions to such problems as acid rain, harmful algal blooms, global warming, air and water pollution, oil spills, overfishing, and coastal erosion. GSO is home to the Coastal Institute, the Coastal Resources Center, Rhode Island Sea Grant, the Institute for Archaeological Oceanography, the Pell Marine Science Library, and the National Sea Grant Library.

Lisa Cugini | EurekAlert!
Further information:
http://www.uri.edu/

More articles from Earth Sciences:

nachricht AWI researchers measure a record concentration of microplastic in arctic sea ice
24.04.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Climate change in a warmer-than-modern world: New findings of Kiel Researchers
24.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>