Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meteorite Crash Turned Earth Inside Out

03.06.2004


A devastating meteorite collision caused part of the Earth’s crust to flip inside out billions of years ago and left a dusting of a rare metal scattered on the top of the crater, says new U of T research.



The study, published in the June 3 issue of Nature, examines the devastating effects of meteorite impacts on the Earth’s evolution. Researchers from the University of Toronto and the Geological Survey of Canada studied the remains of a 250-kilometre wide crater in Sudbury, Ontario, known as the Sudbury Igneous Complex, caused by a collision with a Mount Everest-sized meteorite 1.8 billion years ago. They discovered that the meteorite burrowed deep into the Earth’s upper crust - which measures an average of 35 kilometres thick - and caused the upper crust to be buried under several kilometres of melted rock derived from the lower crust.

The dynamics of meteorite impacts remain a source of debate among researchers and, until now, there has been little hard evidence to prove a meteorite could pierce through the Earth’s upper crust and alter its compositional makeup. "It had not really been appreciated that large impacts would selectively move material from the bottom of the crust up to the top," says lead researcher James Mungall, a U of T geology professor. "This has been suggested for the Moon at times in the past but ours is the first observational evidence that this process has operated on Earth."


In the study, Mungall, his graduate student Jacob Hanley and Geological Survey researcher Doreen Ames concluded Sudbury Igneous Complex is predominantly derived from shock-melted lower crust rather than the average of the whole crust as has been previously supposed. The researchers discovered a subtle but significant enrichment of iridium, an extremely rare metal found mainly in the Earth’s mantle and in meteorites. Due to the low magnesium and nickel content found in the samples they concluded that the iridium came from the meteorite itself rather than the Earth’s mantle.

The discovery of the iridium allowed the researchers to paint a picture of what happened billions of years ago, when a meteorite collided with the earth at a velocity exceeding 40 kilometres per second and caused a shock melting of 27,000 cubic kilometres of the crust. "The impact punched a hole to the very base of the crust and the meteorite itself was probably vaporized," says Mungall.

This collision, he says, caused a plume of iridium-enriched vaporized rock to surge up and recondense on top of the impact site. Simultaneously, the cavity collapsed within minutes or hours to form a multi-ring basin 200 to 300 kilometres in diameter and one to six kilometres deep.

"Picture a drop falling into a cup of milk, thus producing a bowl-shaped depression for a moment before the milk outside rushes back in to fill the hole," says Mungall. "Now imagine that the falling drop of milk is a rock 10 kilometres in diameter, and the resulting depression is 30 to 40 kilometres deep."

The Sudbury Basin is the second oldest very large impact crater site in the world but is one of the most accessible and well preserved. The oldest one, South Africa’s two-billion year-old Vredefort Crater, has eroded over time and only the basement remains. Another impact site, the Chicxulub Crater in Yucatan Peninsula, believed to be responsible for the extinction of the dinosaurs, lies buried under beds of limestone.

The study was funded in part by the Geoscience Laboratories of the Ontario Geological Survey and the Geological Survey of Canada.


CONTACT:

James Mungall
Dept of Geology
416-978-2975
mungall@geology.utoronto.ca

Karen Kelly
U of T Public Affairs
416-978-0260
k.kelly@utoronto.ca

Karen Kelly | University of Toronto
Further information:
http://www.utoronto.ca

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>