Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earthquakes beget earthquakes near and far

01.06.2004


Earthquakes not only shake up the local area but they also increase the rate of earthquake events locally and at a distance. The answer to how this happens may be in the laboratory, according to a Penn State researcher.



"We have learned a lot since the Landers earthquake in the Mojave Desert in 1992," says Dr. Chris Marone, professor of geosciences. "We learned that earthquake triggering happens a lot more than we thought. The mechanism is not well understood."

Marone is working with Margaret S. Boettcher, a Ph.D. student he coadvises at the Massachusetts Institute of Technology, and Heather M. Savage, his Ph.D student at Penn State, investigating in the laboratory the way triggering of earthquakes works and whether or not a time lag exists between the initial earthquake and the ones that follow.


The researchers use a deformation apparatus that simulates the fault zone between slipping rock masses and the slipping forces on it. Then a force is placed perpendicular to the fault to simulate the perpendicular vibration caused by the energy waves from the initial earthquake on the already stressed "fault." The researchers reported their results in a recent issue of the Journal of Geophysical Research.

"Yes, we do find lags between the changes in the forces and the changes in the strength," says Marone. "There are seconds of delay in the laboratory between the force being applied and the fault moving."

While the delay in the laboratory is in seconds, in the real world the delay can be from minutes to a week after the initial shock. The researchers believe they know why a delay exists between the vibration waves of the initial earthquake and the motion on other faults. The area of interest is the gouge zone, the space between the solid rock filled with everything from sand to pea size gravel to large boulders. This granular fault gouge can be up to a kilometer in width.

"We have known since the 1800s that compacted grains when sheared expand and increase volume," says Marone. "The best example of this phenomenon, known as dilatancy, is on the beach. Your foot, as you step, shears the compacted sand and the beach surface dries momentarily as water drains into the pore space between grains. When you lift your foot, the granules collapse back into their compacted position, leaving a dry footprint."

Within this gouge zone, a competition between compaction and dilation of the granules takes place. The perpendicular force of the periodic waves produced by the initial earthquake changes the steady state density and porosity. The change in porosity is dilation. Through compaction and dilation, an area parallel to the fault in the gouge is set up where the slipping movement of the earthquake actually takes place.

The Lander’s earthquake was a shallow earthquake and created many surface waves. Other similar earthquakes have occurred in the Mojave, Denali, the Hector Mine earthquake and in ChiChi, Taiwan. Potential for this type of earthquakes exists worldwide.

"People have been taking laboratory data and trying to model seismic hazard from trigger earthquakes," says Marone. "The lag between the time stresses reaches a fault and, when the strength in the fault gouge changes, must be considered to model this properly." The National Science Foundation and the United States Geological Service funded this research.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>