Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists look at moon to shed light on Earth’s climate

28.05.2004


According to a new NASA-funded study, insights into Earth’s climate may come from an unlikely place: the moon.


Researchers Look at Moon for Climate Answers
This composite image of the dark side’s Earthshine (left of image) and bright side’s Moonshine (right of image) illustrates what scientists are looking at. Researchers used a blocking filter to dim the Moonshine crescent, typically about 10,000 times brighter than Earthshine.
Credit: BBSO/NJIT



Scientists looked at the ghostly glow of light reflected from Earth onto the moon’s dark side. During the 1980s and 1990s, Earth bounced less sunlight out to space. The trend reversed during the past three years, as the Earth appears to reflect more light toward space.

Though not fully understood, the shifts may indicate a natural variability of clouds, which can reflect the sun’s heat and light away from Earth. The apparent change in the amount of sunlight reaching Earth in the 1980s and 1990s is comparable to taking the effects of greenhouse gas warming since 1850 and doubling them. Increased reflectance since 2001 suggests change of a similar magnitude in the opposite direction.


Researchers from the New Jersey Institute of Technology (NJIT), Newark, N.J., and California Institute of Technology (Caltech), Pasadena, Calif., combined NASA cloud data from satellites with records of Earth’s reflectance off the moon, called earthshine. The study, funded by NASA’s Living With a Star Program, appears May 28 in the journal Science.

"Using a phenomenon first explained by Leonardo DaVinci, we can provide valuable data on the overall reflectance of the Earth, and indirectly, on global cloud cover," said Phil Goode, a physicist at NJIT, one of the paper’s authors. He is director of Big Bear Solar Observatory (BBSO), Big Bear City, Calif. "Our method has the advantage of being very precise, and light reflected by large portions of Earth can be observed simultaneously," he said.

Recent news reports suggested sunshine reaching Earth declined from the late 1950s to the early 1990s. This new study suggests the opposite. Earth’s surface may have been sunnier, or less cloudy, in the 1980s and 1990s. BBSO has conducted precision earthshine observations since 1994. Regular observations began in late 1997.

The research team improved upon an old method for monitoring earthshine. They compared earthshine measurements from 1999 to mid-2001 with overlapping satellite observations of global cloud properties. The cloud satellite record from 1983 to 2001 came from the NASA-managed International Satellite Cloud Climatology Project. By matching these two records, the researchers used the cloud data to extend the record and construct a substitute measure of Earth’s albedo, the fraction of light reflected by a body or surface.

The data showed a steady decrease in Earth’s albedo from 1984 to 2000. Between 1995 and 1996, Earth dimmed even more sharply. The data were consistent with satellite measurements of changing global properties. From 1997 to 2000, Earth continued to dim. The researchers suggest, during this time period, the decreases in Earth’s reflectance may be related to an observed accelerated increase in mean global surface temperatures. From 2001 to 2003, Earth brightened to pre-1995 values. The researchers attributed the brightening to changes in cloud properties.

"At the moment, the cause of these variations is not known, but they imply large shifts in Earth’s radiative budget," said co-author Steven Koonin, a Caltech physicist. "Continued observations and modelling efforts will be necessary to learn their implications for climate."

The research offers evidence Earth’s average albedo varies considerably from year to year, and from decade to decade. "Our most likely contribution to the global warming debate is to emphasize the role of clouds in climate change must be accounted for, illustrating that we still lack the detailed understanding of our present and past climate system to confidently model future changes," said Enric Palle, a postdoctoral associate at NJIT, lead author of the paper. Pilar Montan~es-Rodriguez, a postdoctoral associate at NJIT, is another co-author.

"Even as the scientific community acknowledges the likelihood of human impact on climate, it must better document and understand climate changes," Koonin said. "Our ongoing earthshine measurements will be an important part of that process."

BBSO, operated by NJIT, is partially supported by NASA. NASA’s Living with a Star Program develops the scientific understanding necessary to effectively address those aspects of the connected sun-Earth system that directly affect life and society.

Krishna Ramanujan | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/topstory/2004/0528earthshine.html

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>